Pitt Med adapts to a world that has suddenly gone remote.
On January 7, 2020, Anantha Shekhar, MD, PhD, a nationally recognized educator, researcher, and entrepreneur with major contributions in medicine and life sciences, was named senior vice chancellor for the health sciences and John and Gertrude Petersen Dean of the School of Medicine. Learn more about his background, his experiences, and what Pitt Med can expect.
RESEARCH

Exemplary exploration; Noteworthy advancements and grants pp. 26–30; NAS honoree’s reflections p. 31; Regenerative startup pp. 32–33; Space age know-how; TB’s new shot; Improving transplants pp. 34–36

DONORS

Pay it forward p. 38: Family foundation remembers its patriarch p. 43; An inspiring, grateful reunion p. 46; List of donors pp. 39–49

On the cover

The pandemic may have isolated us physically, but the School of Medicine community has adapted by staying connected with the world virtually and by unflinchingly moving forward with research, learning, achievements, and benevolence.

Artist: Klaus Kremmerz
MEET: ANANTHA SHEKHAR, MD, PHD

First Impression

The doctor, on his first shift as a psychiatric resident, walks into the room of a patient, who is a white, middle-aged, Midwestern woman. The patient, understandably, has no way of knowing the credentials of the doctor.

The journey to walking into that room for Anantha Shekhar included scoring among the top 1% of high school seniors on ASSET, a test taken by all of India’s high school students to help determine college placement. Two years later, he again scored among the very best in another placement test to gain admittance to St. John’s Medical College, the sole Catholic medical school in Asia, which admits only about 60 students from tens of thousands of applicants. Six years later, he received a coveted NIH-funded psychiatry fellowship and boarded an airplane for the first time to further his medical career at Indiana University.

The patient, unaware of how fortunate she is to be in Shekhar’s care, hears him say hello. She then looks him straight in the eye and replies:

“Pardon my French, but I don’t want any f*cking [N-word] examining me.”

Her response was uttered in the early 1980s but has never been forgotten by Shekhar:

“I was stunned and had no idea what to do because I never really encountered racism until then. My attending didn’t do anything; he just kind of asked me to leave because the patient didn’t want me in the room. That’s when I realized that there is a subset of our society that has strong prejudices toward skin color and Blacks in particular.

“And that’s why, to this day, I feel so passionate that to have a just society we have to do things differently.”

In his leadership role at Pitt, he says he’s more than ready to leave his mark on all of the traditional benchmarks; and, he emphatically adds, he’s eager to remove — for both faculty and patients — any undercurrent of being an “other.”

“Anantha’s capacity to envision solutions, galvanize partnerships, and produce results is second to none, and his record of propelling both people and institutions to success is unparalleled.”

Chancellor
Patrick Gallagher
The lifelong journey of Anantha Shekhar, MD, PhD, began years ago in one of India’s tiniest villages. His childhood education in a two-room schoolhouse morphed into a career in medicine that, by June 2020, brought him to Pittsburgh as the new senior vice chancellor for the health sciences and John and Gertrude Petersen Dean of the School of Medicine at the University of Pittsburgh, succeeding Arthur S. Levine, MD.

Dr. Shekhar’s journey has encompassed scientific excellence, clinical prowess, successful entrepreneurship, and outstanding leadership—all accomplished without losing sight of inclusivity and compassion.

“Anantha’s capacity to envision solutions, galvanize partnerships, and produce results is second to none, and his record of propelling both people and institutions to success is unparalleled,” says Chancellor Patrick Gallagher.

Jeffrey Romoff, president and CEO of UPMC, concurs: “Dr. Shekhar’s bold vision and collaborative spirit will further the successful partnership between UPMC and Pitt, enabling us to continue pushing the boundaries of academic medicine to the benefit of patients around the world.”

Shekhar’s credentials speak for themselves. After completing a psychiatry residency in 1989 and a PhD in neuroscience in 1992, both at Indiana University, he remained on Indiana’s faculty for nearly three decades before coming to Pitt. Highlights of his multiple leadership roles at Indiana include growing NIH funding 73% while overseeing Indiana’s research during the past five years; cofounding several successful biotech companies; forming two commercial incubators; directing a highly productive laboratory; leading curriculum reform at Indiana’s School of Medicine; and forming the Indiana Clinical and Translational Sciences Institute, the only statewide institution of its kind, which is a collaboration among Indiana, Purdue, and Notre Dame Universities to improve the region’s health care.

Although arriving at Pitt during a pandemic, he’s unfazed. “I’m optimistic that the world will be a better place in 2021, definitely by 2022,” he says, “and I’m confident that Pittsburgh will be, just as it has always been, a prominent contributor.”
Why Pittsburgh?

In-person at Alan Magee Scaife Hall: Dr. Shekhar, sitting in his School of Medicine office—and keeping a social distance—discussed off the cuff the past, present, and future.

Do you sometimes think back and wonder how a young boy growing up in a tiny village in India is now responsible for 6,000 faculty and staff and 5,000 students?

AS: [chuckles] I sometimes wonder how it is possible that this has all happened. Life takes you on all sorts of journeys. Many professional people, my teachers, colleagues were all wonderful to me along the way.

So how did the journey begin?

AS: It started with my parents, who were very committed to me being educated. Fortunately, I enjoyed school—liked reading, liked learning, was always very curious.

You certainly excelled in school, which enabled you to pursue your interest in a medical career. Why psychiatry in particular?

AS: My closest friend, we grew up together from primary school, and I were both interested in health and medicine. When we were first-year students at college, I found him one evening as dusk was settling in, bumping into pillars in our dorm. I was taken aback and had him get medical attention the next day. It turns out he had a massive brain tumor that had begun to compress his optic nerve. He passed away about four months after that [pause]. What happened to him made me want to better understand the brain. The more I learned about the brain in medical school, the more it really fascinated me. I wanted to get more training and education, which is why I pursued a psychiatry residency and a PhD in neuroscience at Indiana University.

You had quite an impressive run in your nearly 40 years as a post-graduate trainee and longtime faculty member at Indiana before coming to Pitt. What are some of the things that stand out to you during your time there?

AS: Well, it’s where I first met my wife [Gina Laite, MD] while we were both part of the IU residency [smiles; they now have two grown children]. I’m also proud of helping lead the Precision Health Initiative, where we brought together researchers from Indiana, Purdue, and Notre Dame to improve treatments and find cures for some of the state’s and nation’s most dreaded diseases. The initiative had an estimated statewide economic impact of nearly $200 million in just four years, and we hired more than 100 scientists and created four companies and recruitment of another one to Indiana.

Very impressive. With all of your success there, why come to Pitt?

AS: What I could do in Indiana, like with the Precision Health Initiative, I can do three times faster and three times bigger with Pitt. There’s tremendous skill here. Pitt has its own engineering school, plus we have Carnegie Mellon University next door. Creating an ecosystem of collaborations here will increase the number of patents issued. Then we will increase the number of commercial entities using a patent to build a product and, ultimately, improve health care.

Another attraction of Pitt is having UPMC as a partner, not only as a health care provider but as an insurer—half of its business is actually insurance. So it makes fiscal sense to train our physicians of the future on the importance and impact of addressing social determinants. Take a chronic diabetic for example. The care is focused on clinics and hospitals. We aren’t paying attention to all the prevention and management measures. We have no coverage for their nutritional status. Exercise. Personal care. Social aspects of their disease. Instead, we are constantly prescribing expensive medications for them. Bringing them in for expensive tests. And then, once necessary, they have expensive surgery. It’s a medical model and a disease and a treatment model, not a lifestyle and prevention model. By focusing more on health care excellence, the savings that occur for UPMC’s insurance plan can then be put to good use for medical advancements while we’re also keeping our patients healthier.

Sounds like a meaningful goal. Have you had a chance to formulate other goals for the health sciences at Pitt and the School of Medicine in particular?

AS: Yes, I have several goals that I think are attainable by 2025. Educational, research, clinical, and translational excellence go without saying. I expect us to be considered among the top 10 in the nation in each of those areas. I also want us to be a national leader in commercialization and product development. I want to make precision medicine part of routine clinical care. To do so, we need to have large data sets from patients, which includes various genetic as well as health utilization data, so we can better understand patterns in order to predict outcomes—it can all be tailored to individual patients and their genetics and their disease. We’ll need, of course, lots of data and sophisticated computing and data analysis capabilities. Pitt and UPMC probably make Pittsburgh the best place where this can happen because of the size, the complexity of the health system, the talent here at Pitt, as well as the AI and computational talent at Carnegie Mellon University. Pittsburgh could very well be the place to make precision medicine the norm and routine within the next five years or so.
What concerns do you have?

AS: Health disparity is a major concern and not just for Pittsburgh. In many of our country’s urban areas there are zip codes where health outcomes are worse than Bangladesh while there are other zip codes that are better than Sweden. In Indianapolis, there is a train track that goes from Louisville to Chicago and cuts right through the city. Along those tracks, within a 12-mile radius the lifespan of the population drops by 14 years—65 years in the inner city, 81 years in the suburbs. That can’t go on.

It’s difficult to comprehend why such a health disparity hasn’t been addressed.

AS: Part of the challenge is that the underserved don’t trust the system because the health care professionals don’t look like them. The disparity is never going to end unless we start training more doctors who are persons of color; it’s never going to change until we train leaders, not just in research, but in social impact—leaders who are going to disrupt health care and create a new model, doctors who are going to look at social determinants of health. Ultimately, to change our society’s health, we need to focus not only on the biology, because that’s only 20% of the diseases; 80% of the outcomes of any disease—other than some infections and certain types of cancer—are a patient’s behavior, a patient’s environment, a patient’s lifestyle, so we have to focus more on the entire picture.

When you talk about increasing diversity among medical students, some might argue that could lead to a lessening of standards in order to have a diverse class.

AS: I completely reject the argument that we’ll need to compromise our standards or our mission by increasing diversity. We get 7,000 applicants for 140 seats, so it’s not like we don’t have a choice. The cream of the crop apply. Take the top MCAT scores. There are, on an average, 100 Black students who ace the MCAT. Why don’t they come to Pitt? Well, we don’t have enough scholarships, and we don’t have enough diversity. We need to work on creating an environment where they want to come here. Increase diversity. Make medical school more affordable. Perhaps make the fourth year of medical school a paid hybrid year in which the student is a trainee. That could reduce a student’s debt by as much as $75,000.

It seems like you’re talking about a true paradigm shift in training doctors.

AS: Don’t get me wrong; we’re incredibly successful in research—and we’re not going to diminish the importance of research—but now it’s time to increase our expertise in other dimensions as well. Think of it this way. In the past, doctors couldn’t carry a medical library with them and check a reference in their office just as they were about to see a patient. But today there’s more information in an iPhone than there was in my medical school library.

Times have changed!

AS: What hasn’t changed is that we need to learn from the patient and think through the problems and create solutions, which has been our University’s wonderful history.

From the chancellor on down, people at Pitt have mentioned how pleased they are to have you here. Do you think—given the somewhat perilous state of the world—it’s still possible for a youngster living today in a tiny village in India to follow in your footsteps?

AS: I think so; I would hope so.

With that optimistic reply, Dr. Shekhar smiled and concluded the session.
The year 2020 will be memorable for many reasons, including these bright spots for Pitt faculty:

Stephen Badylak, DVM, PhD, MD, professor of surgery and deputy director of the McGowan Institute for Regenerative Medicine, was presented with a Lifetime Achievement Award by the Tissue Engineering and Regenerative Medicine International Society for his work to advance extracellular matrix-driven tissue regeneration.

Jan Beumer, PharmD, PhD, professor of pharmaceutical sciences, School of Pharmacy, was named editor-in-chief of the Cancer Chemotherapy and Pharmacology journal. Beumer has a secondary appointment as professor of medicine and is director of the UPMC Hillman Cancer Center Cancer Pharmacokinetics and Pharmacodynamics Facility.

Peter Strick, PhD, Distinguished Professor and chair of neurobiology, Thomas Detre Professor of Neuroscience, and founding scientific director of the University of Pittsburgh Brain Institute, received the Krieg Cortical Kudos Discoverer Award from the Cajal Club Neuroscience Society in recognition of his contributions to the understanding of the cortical circuits involved in motor control.

John Williams, MD, Henry L. Hillman Professor of Pediatric Immunology, is the 2020 recipient of the Norman J. Siegel Outstanding Science Award from the American Pediatric Society in recognition of his significant contributions to the field of pediatrics. He is an international leader in the field of respiratory virus biology, particularly human metapneumovirus.

As of winter 2020, COVID-19 remains a worldwide crisis. Pitt is among notable institutions leading the way in pursuing treatments and vaccines. Learn more, starting on page 8, about the School of Medicine’s efforts.
Leadership News

Among the newest appointments to leadership roles in the health sciences and School of Medicine are these:

- **Derek C. Angus, MD, MPH.** Distinguished Professor, Mitchell P. Fink Professor, and chair of critical care medicine, is the health sciences schools’ inaugural associate vice chancellor for health care innovation. This role complements his appointment as UPMC’s chief health care innovation officer and fosters more strategic linkages between Pitt and UPMC to improve learning of health systems and clinical care delivery.

- **Stephen Chan, MD, PhD.** professor of medicine, is director of the Vascular Medicine Institute. He also continues to direct the Center for Pulmonary Vascular Biology and Medicine and work with the cardiology fellowship research program.

- **Paula Davis, MA.** is associate vice chancellor for diversity, equity, and inclusion, health sciences, a new position. She is responsible for coordinating the recruitment and retention of diverse faculty, students, and staff in the health sciences schools; developing cultural competence education; and working to create a more inclusive environment.

- **Mark W. Geraci, MD.** professor of medicine, is associate vice chancellor for interdisciplinary research, health sciences. In this newly reconfigured role, Geraci will advance research efforts across all six health sciences schools to support the University’s expanding biomedical research activities. Prior to joining Pitt, Geraci served as John B. Hickman Professor and chair of the Department of Medicine at Indiana University.

- **Alda Maria Gonzaga, MD, MS.** associate professor of medicine, is associate dean for student affairs. Gonzaga is known for her leadership in efforts on diversity, equity, and inclusion. She succeeds Joan Harvey, MD, who retired after 30 years at Pitt.

- **Evelyn C. Reis, MD.** professor of pediatrics, is associate dean for the learning environment. Reis is an educational leader in communication skills and the doctor-patient relationship. She was the founding medical director of the University’s Clinical and Translational Science Institute pediatric practice-based research network, Pediatric PittNet.

- **Jason Rosenstock, MD.** professor of psychiatry, is associate dean for medical education. Rosenstock has won multiple teaching excellence awards, helped to found the medical school’s neuroscience area of concentration, and has served as chair of the curriculum committee since 2015.

Distinguished Faculty

The School of Medicine now boasts 13 additional faculty members who have been awarded the title of Distinguished Professor, the highest honor the University can accord to its faculty.

They are **Boris Birmaher, MD.** and **David Brent, MD.** Distinguished Professor of Psychiatry; **Gregory Cooper, MD, PhD.** Distinguished Professor of Biomedical Informatics; **Terence Dermody, MD.** Distinguished Professor of Pediatrics; **JoAnne Flynn, PhD.** Distinguished Professor of Microbiology and Molecular Genetics; **John Kirkwood, MD.** Distinguished Service Professor of Medicine; **Patrick Kochanek, MD.** Distinguished Professor of Critical Care Medicine; **Fadi Lakkis, MD.** Distinguished Professor of Surgery; **John Mellors, MD.** Distinguished Professor of Medicine; **José-Alain Sahel, MD.** Distinguished Professor of Ophthalmology; **Mark Shlomchik, MD, PhD.** Distinguished Professor of Immunology; **William Wagner, PhD.** Distinguished Professor of Surgery; and **Adriana Zeevi, PhD.** Distinguished Service Professor of Pathology.

Humanism Honors

The School of Medicine congratulates those who have recently been inducted into the Charles G. Watson Chapter of the Arnold P. Gold Humanism Honor Society. The society honors medical students, residents, fellows, and others selected by a vote of their peers who demonstrate high standards of humanistic clinical care, leadership, compassion, and dedication to service.

New members from the Class of 2021:
- Ololade Adebiyi
- Lauren Auster
- Patricia Campos
- Bryce Churilla
- Catherine Corey
- Camille Davis
- Mikaela Fenn
- Valerie Gobao
- Alexandria Harris
- Rafa Iftikhar
- Evan Keller
- Song Kim
- Kathleen Koesarie
- Anna Leone
- John Leech
- Kara McClain
- Arthi Narayanan
- Cristine Oh
- Katherine Orr
- Vivianne Oyefusi
- Rahilla Tarfa

Prestigious Recognition

The National Academy of Medicine—which has more than 2,000 members chosen by their peers in recognition of outstanding achievement in their fields, as well as their willingness to engage in advisory activities—has elected two Pitt physician-scientists this past year:

- **Toren Finkel, MD, PhD.** G. Nicholas III and Dorothy B. Beckwith Professor of Translational Medicine and director of the Pitt Aging Institute, and **Amy Wagner, MD.** Physical Medicine and Rehabilitation Professor of Translational Research, School of Medicine, and professor of neuroscience, Dietrich School of Arts and Sciences.

 Finkel’s work centers on how oxidative stress and the function of mitochondria alter the rate of aging. Recently, his focus has been on autophagy—the body’s natural way of clearing out old and damaged parts of cells—as a target for anti-aging therapeutics.

 Wagner uses biomarkers and statistical modeling to predict how well patients will recover from brain injury and to guide clinical decisions along the way—a strategy she calls “personalized rehabilitation medicine.” Her experimental research focuses on how dopamine systems, hormones, inflammation, and rehabilitation-relevant therapeutic agents affect plasticity and functional recovery. She also treats patients with neurological conditions during their acute care hospitalization and inpatient rehabilitation.

 Including Finkel and Wagner, 20 Pitt School of Medicine faculty are among the academy’s elite membership.

Congratulations!
Scientists and clinicians across Pitt’s six health sciences schools, along with colleagues from other academic departments, have taken a prominent role in responding to the pandemic. In all, Pitt is home to more than 400 ongoing studies related to COVID-19 and SARS-CoV-2.

Perhaps foremost among these are studies in the University’s Center for Vaccine Research (CVR), which integrates efforts in virology, immunology, and other disciplines to develop diagnostics, therapeutics, and vaccines against known and emerging infectious diseases. CVR houses one of the few labs nationwide qualified to handle pathogens like SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), which causes COVID-19. CVR director W. Paul Duprex, PhD, associate professor of immunology, is investigating a polyclonal antibody therapy (SAB-185) that could be used to both treat and prevent COVID-19. Clinical staff began injecting SAB-185 into healthy volunteers for a phase I trial in August 2020.

Two pharmaceutical companies, Moderna and AstraZeneca, partnered early with Pitt and UPMC on vaccine trials. The phase III trials were led by Judith Martin, MD, director of the Pittsburgh Vaccine Trials Unit and CVR member, and Sharon Riddler, MD, director of clinical research in Pitt’s Division of Infectious Diseases. (See page 10)

Another potential vaccine, called PittCoVacc, was developed by a team led by Louis Falo, MD, PhD, professor and chair of dermatology, and Andrea Gambotto, MD, associate professor of surgery. PittCoVacc is administered using a fingertip-sized patch of 400 tiny needles that delivers lab-made coronavirus spike protein pieces into the skin, where the immune reaction is strongest. The patch goes on like a Band-Aid, and then the needles simply dissolve. When tested in mice, the vaccine produced antibodies specific to SARS-CoV-2 at quantities thought to be sufficient for neutralizing the virus.

Although PittCoVacc, unlike some other vaccine candidates, is still in the preclinical phase, Falo believes that if PittCoVacc is approved, its delivery method has global distribution advantages and potential applications outside of the pandemic.
Researchers and clinicians have noted that many patients who have died from COVID-19 formed blood clots throughout their bodies, including in their smallest blood vessels. This unusual clotting—one of many life-threatening effects of the disease—causes multiple health complications, from lung and other organ damage to heart attacks, pulmonary embolisms, and strokes.

Antithrombotics, also known as blood thinners or anticoagulants, keep blood protein and platelets from turning into clumps or sticking to each other. Doctors are determining whether COVID-19 blood thinners are effective in treating patients with this condition and, if so, at what point they should be applied.

Stephen Wisniewski, PhD, Pitt’s vice provost for budget and analytics, and two physician-scientists from Pitt—Matthew D. Neal, MD, Roberta G. Simmons Associate Professor of Surgery, and Frank Sciurba, MD, professor of medicine, who directs the Pulmonary Function Exercise Physiology Laboratory—are leading this effort.

“Understanding how to treat coagulation risk in COVID-19 patients is critical to lessening the impact of this pandemic,” says Wisniewski. “Pitt’s ability to innovate and collaborate enables us to help ensure that these trials will be completed with the rigor and speed necessary to make an impact at this critical moment. In collaboration with NIH and our peer institutions, we will use the combined tools of biology and statistics to advance the treatments of this deadly virus.”

“This has been an amazingly cooperative endeavor—unequivocally the most rapidly moving, complex but also highly collaborative experience of my life,” says Neal.

“While the greatest focus on blood clotting complications has been in the inpatient setting, earlier attention in more stable patients prior to hospitalization may have an important impact on progression to the more serious consequences of COVID-19,” says Sciurba.

ACTIV-4 CLINICAL TRIALS RELYING ON PITT

The National Institutes of Health (NIH) selected the University of Pittsburgh to lead a trio of phase III clinical trials involving COVID-19 patients. Collectively known as ACTIV-4 Antithrombotics, these trials will explore the use of blood thinners in saving lives and improving care, particularly among adult COVID-19 patients who are at risk of developing life-threatening blood clots.

As the coordinating center for these trials, Pitt is occupying a leading role in NIH’s Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) initiative, funded through Operation Warp Speed. Six other universities—Harvard University, New York University, the University of Illinois at Chicago, the University of Michigan, the University of North Carolina at Chapel Hill, and the University of Vermont—are also participating in the initiative, which will continue to add qualifying institutions.

“This is a massive undertaking supported by NIH—one that is leveraging a global network to help improve patient outcomes for COVID-19. It is also a challenge that the University of Pittsburgh, a longtime leader in health care innovation, is perfectly positioned to tackle,” says Anantha Shekhar, MD, PhD, Pitt’s vice provost for budget and analytics, and two physician-scientists from Pitt—Matthew D. Neal, MD, Roberta G. Simmons Associate Professor of Surgery, and Frank Sciurba, MD, professor of medicine, who directs the Pulmonary Function Exercise Physiology Laboratory—are leading this effort.

“Understanding how to treat coagulation risk in COVID-19 patients is critical to lessening the impact of this pandemic,” says Wisniewski. “Pitt’s ability to innovate and collaborate enables us to help ensure that these trials will be completed with the rigor and speed necessary to make an impact at this critical moment. In collaboration with NIH and our peer institutions, we will use the combined tools of biology and statistics to advance the treatments of this deadly virus.”

“This has been an amazingly cooperative endeavor—unequivocally the most rapidly moving, complex but also highly collaborative experience of my life,” says Neal.

“While the greatest focus on blood clotting complications has been in the inpatient setting, earlier attention in more stable patients prior to hospitalization may have an important impact on progression to the more serious consequences of COVID-19,” says Sciurba.
IH’s COVID-19 Prevention Network and Operation Warp Speed vaccine program are counting on the University of Pittsburgh to play a key role in COVID vaccine clinical trials—and it’s no wonder. Vaccines and Pittsburgh go way back, most notably to the 1950s, when Pitt researchers led by Jonas Salk, MD, developed the first safe, effective vaccine against polio—the most feared disease of the era.

Beyond developing vaccines, conducting vaccine clinical trials is a crucial process, one with which Pitt has considerable experience. The Pittsburgh COVID vaccine clinical trials site is enlisting 750 participants, and several hundred volunteers have received the COVID vaccine as part of nationwide phase III clinical trials, says Judith Martin, MD, professor of pediatrics and director of the Pittsburgh site for the Moderna vaccine research study. The registry of Pittsburgh volunteers numbers almost 5,000 individuals, including many members of the Black and Latinx communities, which have been disproportionately affected by COVID-19.

In addition to the Moderna COVID vaccine, a second Pittsburgh site for the AstraZeneca vaccine is being directed by Sharon Riddler, MD, professor and clinical research director in the Department of Medicine’s Division of Infectious Diseases. The studies, which focus on vaccine efficacy and duration of immunity, have enrolled hundreds of patients from the region and contributed to the early vaccines’ success.

Martin is also working with Janssen, the vaccine arm of Johnson & Johnson, and further notes that a Moderna pediatric vaccine study may be the next step for Pitt researchers.

“Pittsburgh has done vaccines for a long time,” says Martin, who also directs the Pittsburgh Vaccine Trials Unit at UPMC University Center. “I think what’s so wonderful about this environment is that we have the resources and we have such a collaborative nature,” which, she says, has been key to enrolling diverse participants and rapidly obtaining the necessary infrastructure and personnel to conduct the trials.

Before the COVID-19 pandemic, School of Medicine student Carly O’Connor-Terry was conducting research with the Pittsburgh Center for Autistic Advocacy. When the virus hit Pittsburgh, she formed a volunteer effort with her med school peers and contacted the center to see if there was anything they could do to help.

Opal M. said they were thankful O’Connor-Terry contacted them because an entire community was in need.

“When Carly emailed us, I had just tested positive for COVID-19,” said M., the center’s assistant director and an autistic, disabled, queer/nonbinary parent of children who are autistic and disabled. “I looked and looked—even asked several of my physician contacts—and couldn’t find any materials whatsoever written in plain language to help better understand the virus.”

M. said it can be difficult for autistic people and people with intellectual disabilities to recognize cues in their own bodies, like hunger or thirst, or when they are sick or tired.

For O’Connor-Terry, a Pittsburgh native, she can personally relate to these concerns. O’Connor-Terry has an autistic brother with whom she does not communicate orally. She said this is part of the reason it was so important to help.

The same day she connected with M., O’Connor-Terry quickly got to work on the guide, recruiting help through a Slack group of med students across the country. Using the CDC guidelines for reference, the team produced a plain language guide describing what COVID-19 is and what to do if a person experiences symptoms.

“We classified the symptoms into groups. The ‘emergency group’ is the most important, which includes shortness of breath. The ‘ask for help group’ includes fever and cough, and the ‘stay home group’ includes more general symptoms, like sore throat, runny nose, and muscle pain. We have a picture for each symptom, and we describe how the symptom could feel,” said O’Connor-Terry, who is also a Clinical Scientist Training Program research scholar.

O’Connor-Terry and the team had their guide vetted by two infectious disease doctors at Pitt, along with other clinicians with relevant experience, including Peter J. Veldkamp, MD, MS, professor of medicine and director of education and of travel health in the Department of Medicine’s Division of Infectious Diseases.

M. is so thankful for the guide and thinks it will be of great assistance. “People look for things that are illustrated to show how things feel in their bodies—and describe those feelings—so they can better understand what’s happening,” said M.
when the COVID-19 pandemic began, Pitt’s Clinical and Translational Science Institute (CTSI) wasted no time coordinating funding for the vital research and work needed to combat the outbreak across all fronts. In April 2020, CTSI’s COVID-19 Pilot Grant Program awarded $900,000 to 17 Pitt research projects addressing various aspects of the pandemic.

“We are optimistic that the impact of research will provide insight and results,” said CTSI director Steven Reis, MD. “We are proud to be part of this thriving research community that has shown how Pittsburgh really steps up when called upon.”

Awardees were selected after an accelerated, extensive peer-review process. The recipients’ projects covered everything from clinical and community serosurveillance, pneumonia severity biomarkers, neurologic manifestations, maternal infections and newborns, modeling strategies, therapeutic nanobodies, and much more. Pitt’s CTSI, Office of the Provost, Office of the Senior Vice Chancellor for Research, and the DSF Charitable Foundation funded the program.

Reis, who is also Distinguished Service Professor of Medicine and associate senior vice chancellor for clinical and translational research, health sciences, said the grant program was created to support research initiatives aimed at immediate progress toward reducing the harm to individuals, groups, and society from COVID-19. “We need to look at all options to deal with the COVID-19 pandemic, and the response to the call for proposals was overwhelming,” said Reis, alluding to the program receiving more than 150 proposals from 590 investigators across 14 schools. “As encouraged as we were with the number, we were even more impressed with the thinking that went into the proposals from so many different parts of the University,” he added.

The Ab8 antibody—which was tested in collaboration with other U.S. and international universities—is 10 times smaller than a full-sized antibody, meaning it can better penetrate tissues to neutralize the virus and could possibly be administered through inhalation or intradermal injection, as opposed to more standard intravenous antibody administration. The antibody does not bind to human cells, so it is unlikely to cause side effects in humans.

After the researchers infected mice with a modified version of SARS-CoV-2, those treated with even low doses of Ab8 contained 10-times less infectious virus than untreated mice. The drug also effectively treated and prevented SARS-CoV-2 infection in hamsters.

The researchers sifted through a pool of more than 100 billion antibody components, using the SARS-CoV-2 spike protein as bait to determine which antibodies would latch on and become potential therapeutics. Senior author Dimitri Dimitrov, PhD, ScD, professor of medicine in the Division of Infectious Diseases and director of Pitt’s Center for Antibody Therapeutics, was among the discoverers of neutralizing antibodies for the original SARS coronavirus in 2003. He and his team discovered other infectious disease antibodies in ensuing years, hastening the search for effective SARS-CoV-2 antibodies.

Abound Bio, a newly formed, Pittsburgh-based company, has licensed Ab8 for worldwide development, and the researchers hope to begin clinical trials in early 2021.

Ab8 not only has potential as therapy for COVID-19, but it also could be used to keep people from getting SARS-CoV-2 infections. Antibodies of larger size have worked against other infectious diseases and have been well tolerated, giving us hope that it could be an effective treatment for patients with COVID-19 and for protection of those who have never had the infection and are not immune,” Mellors says.

Using antibodies to treat COVID-19 patients takes a similar approach to convalescent plasma therapy, which harnesses antibodies from people who already had COVID-19 to treat those battling infection. Yet this therapy is still being tested in clinical trials, and there may not be enough plasma to benefit all in need.
Equitable Skin Care

In the Department of Dermatology, the Skin Health Equity (SHE) program has enhanced underserved communities’ access to dermatologic care since 2017. The program is vital, in part, because academic literature in dermatology contains a disproportionate amount of white skin compared to Black skin; and skin color influences how certain diseases look, according to Alaina James, MD, PhD, assistant professor of dermatology.

For example, people of color face increased melanoma morbidity because melanoma is often diagnosed at a more advanced stage in people of color. James says. “Through SHE, we are trying to improve all those aspects: education about skin of color, access for patients with skin of color, and education of patients with skin of color so that they can advocate for themselves.”

SHE, after partnering with Pittsburgh community health centers and determining a community’s dermatologic needs, deploys teams of dermatologists, residents, medical students, and undergraduates through MobileDerm, SHE’s outreach program, to provide care in-person or via tele-consultation. James is director of SHE and MobileDerm.

Now, SHE is expanding. In 2020, the MobileDerm program was awarded a pilot grant from Pitt’s Clinical and Translational Science Institute to expand outreach to rural regional communities, some of which are dermatology deserts, James says, with large populations lacking any dermatologists in the community.

James can’t stress enough the importance of skin awareness: “[Skin] is in tune with the rest of the body and reflects a lot of what’s going on with the overall health of the patient. We can commonly diagnose patients with internal medical conditions based on changes that are present on their skin.”

New Center Tackles Pelvic Pain

Although endometriosis and pelvic pain affect as many as one in 10 women of reproductive age, a proper diagnosis can take years. A new center established at UPMC Magee-Womens Hospital aims to improve early diagnosis and treatment of endometriosis and other pelvic pain disorders and to advance research through tissue sample collection and coordination of resources.

Endometriosis occurs when the uterine lining—called endometrial tissue—grows elsewhere in the abdominal cavity. Like normal endometrial tissue, these displaced lesions react to monthly hormonal cues, causing inflammation.

Symptoms include pain during a period and intercourse, generalized pelvic pain outside of the menstrual cycle, and unexplained infertility. Because it can’t be detected with imaging equipment, the only way to definitively diagnose endometriosis is through exploratory surgery.

“Chronic pelvic pain can be so difficult to diagnose,” says Nicole Donnellan, MD, associate professor of obstetrics, gynecology, and reproductive sciences and director of the Chronic Pelvic Pain and Endometriosis Center. “There are many different conditions that can cause pelvic pain, including bladder or muscle spasms, uterine issues, and even gastrointestinal problems.”

The new clinic embraces a unified team approach to patient care, providing patients with the opportunity to meet with gynecologic surgeons, behavioral health therapists, and physical therapists during the same appointment, helping to begin treatment sooner.

“Many women come to the clinic in frustration after being told their pain is psychological,” notes Suketu Mansuria, MD, associate professor of obstetrics, gynecology, and reproductive sciences.

“Someday, we’d like to have a blood test to detect endometriosis, but we need to understand the pathology of the disease first,” says Donnellan, who, along with researchers at Magee-Womens Research Institute, is on the case.
“We’re finding collaborative ways to fight debilitating infectious and immune-mediated diseases that affect children’s lives, like pneumonia, bronchitis, diabetes, and asthma.”

John Williams, MD

i4Kids Initiative

Worldwide, the leading cause of death for children under age 5 is infection. In the United States, more children are hospitalized for infectious and inflammatory diseases than for any other cause.

The Institute for Infection, Inflammation, and Immunity in Children, i4Kids, is a joint initiative launched in 2020 by the University of Pittsburgh and UPMC Children’s Hospital of Pittsburgh to become a center of research, discovery, prevention, and treatment of these diseases in children as the foundation of improving the health of future generations.

“We’re finding collaborative ways to fight debilitating infectious and immune-mediated diseases that affect children’s lives, like pneumonia, bronchitis, diabetes, and asthma,” says John Williams, MD, Henry L. Hillman Professor of Pediatric Immunology and the institute’s director.

“We have great strengths in infection biology and immunology research here in Pittsburgh, and i4Kids will build on those strengths,” adds Terence Dermody, MD, Distinguished Professor, Vira I. Heinz Professor, and chair of the Department of Pediatrics, who conceived the idea of such an institute more than 30 years ago. “We are also united in our goals for improved childhood health, which allows us to recruit for additional strength.”

Currently, 39 faculty members from across the University’s research enterprise are affiliated with i4Kids. Multidisciplinary team pilot projects funded for 2020 include:

- In Situ Engineering of the Skin Immune System To Treat Peanut Allergy (Dermatology and Pediatrics, School of Medicine, and Bioengineering, Swanson School of Engineering)

- Acoustic Waveform Respiratory Examination for Pediatric Inflammatory Airway Diseases (Pediatrics, School of Medicine, and Electrical and Computer Engineering, Swanson School of Engineering)

- CRISPRi Repression of Group B Streptococcus-Externalized Proteins To Identify Key Mediators of Macrophage Responses During Neonatal Infection (Pediatrics and Medicine, School of Medicine)

- Role of Protists in Virus-Mediated Loss of Oral Tolerance and Celiac Disease (Pediatrics and Immunology, School of Medicine)

At the same time, the institute’s Pittsburgh Phage Project is bringing together several dozen faculty from medicine, public health, and the Dietrich School of Arts and Sciences to investigate new uses for bacteriophages — viruses that infect and destroy bacteria.

In September 2020, the R.K. Mellon Foundation announced a $1.5 million grant to support development of a candidate vaccine or therapeutic treatment against acute flaccid myelitis, an infection linked to neurological complications and paralysis in children.

All of this is very good news to Anna Wang-Erickson, PhD, assistant professor of pediatrics and the institute’s associate director, who states, “We are very excited about the development of new collaborations.”
The COVID-19 pandemic, the calls for social justice, and other tumultuous events of 2020 have demanded new means of taking action on equity and outreach and that includes the School of Medicine.

In the Department of Surgery, Timothy Billiar, MD, Distinguished Professor, George V. Foster Professor, and chair of surgery, recently formed the Division of Community Engagement, which builds and fosters health equity, trust, and commitment among Pittsburgh’s communities through educational and engagement initiatives. The division shares information and discussions on COVID safety, nutrition, trauma treatment, and many more topics of concern, while also working to inspire interest in science and medicine among young community members. Billiar appointed Steven Evans, MD, clinical professor of surgery, as community engagement division director.

“Our mission has to be to serve the needs of our surrounding communities, and that includes those who are underserved, underinsured, and underrepresented minorities, in a culturally sensitive way,” says Evans. “I feel it’s really incumbent on us as educators to focus on the root causes of these disparities and outcomes that we see.”

While the pandemic restricts gatherings, the division’s messaging has been shared across Pitt and UPMC channels and via social media, videos, and virtual town hall meetings, often in partnership with organizations attuned to education, social justice, and combating disparities. Two of those partners include the Gateway Medical Society, an organization associated with the National Medical Association working to eradicate disparities in health care, and 1Hood Media, a collective of socially conscious artists and activists.

The division’s outreach also emphasizes cancer screenings, which have taken a hit during the pandemic. “We’re looking now at a potential uptick in cancer diagnoses,” Evans says, “because of people no longer screening due to the pandemic.” Breast cancer and colon cancer are leading killers among Black women and men. Evans says. The division reinforces the COVID safety measures taken by places like UPMC Hillman Cancer Center to keep patients and the community safe while continuing screenings. “We want to educate on prevention and treatment, as opposed to having conversations that accuse the community of not being responsible themselves,” Evans says.

“OUR MISSION HAS TO BE TO SERVE THE NEEDS OF OUR SURROUNDING COMMUNITIES, AND THAT INCLUDES THOSE WHO ARE UNDERSERVED, UNDERINSURED, AND UNDERREPRESENTED MINORITIES, IN A CULTURALLY SENSITIVE WAY.”

Steven Evans, MD

Stories are just so powerful. They are an incredible way to communicate; they can cross cultures, and they’re a way to convey very technical information without using very technical language.

Kathleen M. McTigue, MD, MPH, MS

Storytellers Could Improve Health Outcomes

Story Booth is a research project that collects people’s stories about their health experiences and shares them with researchers. The project’s roots are in PaTH, one of 33 networks that comprise the Patient-Centered Outcomes Research Institute’s National Patient-Centered Clinical Research Network.

“The mission of Story Booth is to promote patient-centered research,” says Kathleen M. McTigue, MD, MPH, MS, associate professor of medicine. “We wanted to make it easier to foster the development of research that addresses questions patients feel are important. Stories are just so powerful. They are an incredible way to communicate; they can cross cultures, and they’re a way to convey very technical information without using very technical language.”

People who volunteer to share their stories with Story Booth often record them over the telephone and agree to allow researchers to listen to the stories. The idea is that if researchers know what topics people think are important, researchers will design studies around those topics. Then, those studies can, hopefully, generate findings that may better people’s health.

McTigue, also associate professor of epidemiology at Pitt’s Graduate School of Public Health, explains that 72% of storytellers have expressed an interest in getting involved in health research as partners who help guide the research process. Story Booth researchers support team-building by introducing storytellers and researchers with shared health interests.

She says, “We knew that many researchers are intrigued by patient-centered research but don’t really know how to make it happen and often feel uncomfortable. Likewise, we know many patients are interested in the concept but are sometimes intimidated because they don’t know how to find or connect with researchers, and they may use different vocabularies than researchers. Story Booth is a way to bring those two different groups of people together.”

In 2019, Story Booth was affiliated with a Pitt Year of Creativity award that funded a project with University of Pittsburgh at Bradford undergraduates and faculty artists. Each picked a story that inspired them and created artwork based on the story.

“It’s another way we’re trying to amplify the storytellers’ voices,” says McTigue.
When [the COVID-19 pandemic] hit and we were told to shelter in place, it hadn’t hit me yet. I was still going to the store without a mask or gloves, but then I started to see the shelves emptied of hand sanitizer, hand soap, toilet paper, etc. I hadn’t really felt the impact of it. I was in shock. Then, I started wearing gloves, a hat, a double mask, and I was really scared—really petrified of people and of being in public spaces. But I had to go out and get necessities. I also have an 80-year-old mother who lives on the other side of town. She definitely couldn’t be going out shopping, so I had to be the one to do it. One time, I had just come from dropping off groceries to my mom and had to drive back across town to get home and unload my groceries. At the time, they didn’t know whether the virus could last on packaging, so I put my groceries on the floor and used bleach mixed with water to wipe everything down before I put it away. I just broke down. It was a lot. I had to remember everything I touched before I got into the house and then everything I had touched once I got inside the house and clean it all. It was overwhelming. I think I had a panic attack or something. Then, I would go to the grocery store and have to tell my mom that they had run out of a lot of things, and we were just going to have to take what we could get. It took about until the middle of May before I felt like I had a groove. But then I started seeing people without masks because they thought [the pandemic] was over. People stopped social distancing. I think we opened up way too early. I just need to do whatever I have to in order to keep myself and my mother safe. It still scares me when people get too close or they’re not wearing masks or wearing them inappropriately. I wonder when I’m going to snap out.”

— adapted from a Story Booth recording of a woman’s experience living through the COVID-19 pandemic as someone who is HIV positive and caring for her aging mother
With the cancellation of most in-person events during the COVID-19 pandemic, the School of Medicine has reinvented how it celebrates its traditional milestone events and builds community. Strict physical distancing meant meeting virtually for most of 2020.

MATCH DAY
Match Day 2020 at Pitt Med was a virtual celebration of the hard work and accomplishments of the graduating medical students. Students fundraised for four years to make their Match Day a celebration to remember. When the arrival of COVID-19 forced their festivities online, the students opted to donate their party funds to local organizations supporting the community during the COVID-19 crisis. That’s a celebration that will leave an indelible memory.

SCOPE AND SCALPEL
By late March, it seemed like Scope and Scalpel—the annual production put on by graduating medical students—would end its 65-year streak of roasting all things Pitt Med. But students were able to film individual parts of “The Lyme King” and screen it as a whole via Zoom in May. Proceeds from this year’s show went to the Greater Pittsburgh Arts Council’s Emergency Fund for Artists.

DIPLOMA DAY
Students in the School of Medicine virtually celebrated Diploma Day on May 18, 2020. It was streamed on YouTube, had all of the traditional pomp and ceremony, and has been viewed more than 7,000 times. David Fajgenbaum, MD, MBA, MSc, assistant professor of medicine at the University of Pennsylvania and a survivor and researcher of Castleman disease, delivered the commencement address. He wrote the acclaimed memoir “Chasing My Cure: A Doctor’s Race to Turn Hope into Action,” reflecting on his journey as a patient and physician-scientist.
The White Coat Ceremony is a symbolic event marking the entry of first-year students into the medical profession. School of Medicine administrators and faculty members virtually welcomed students of the Class of 2024; and Vaughn S. Clagette, MD, MBA, physician, Southeast Permanente Medical Group, and member, Pitt Board of Trustees and UPMC Board of Directors, gave the keynote address: “Your journey is about to begin,” he told the medical students. “At Pitt, with continued work, you can become any and everything you want to be in life.” As for the students, they declared their commitment to integrity, ethical behavior, and honor by reciting the Hippocratic Oath. This year, in addition to the traditional Hippocratic Oath, Chenits Pettigrew Jr., EdD, associate dean for diversity, equity, and inclusion and director of diversity programs, challenged students to write their own class oath for the first time in the school’s 134 years. The new oath was more explicitly inclusive of all people, including those historically overlooked by the medical community.
“We believe that our oath acknowledges the context of U.S. history and medicine and uses it to explain our current state. We used the past and present to clarify our future goals as physicians.”

Tito Onyekweli ’24
Hippocratic Evolution

In addition to reciting the traditional Hippocratic Oath during the White Coat Ceremony in August, members of the University of Pittsburgh School of Medicine’s Class of 2024 started a new tradition by writing their own class oath to acknowledge their ever-evolving responsibilities as physicians.

At orientation, Chenits Pettigrew Jr., EdD, associate dean for diversity, equity, and inclusion, challenged med students to update the oath. After circulating a draft to the entire medical school class for feedback, students officially presented the new oath to Anantha Shekhar, MD, PhD, senior vice chancellor for the health sciences and John and Gertrude Petersen Dean of the School of Medicine.

“At Pitt, we challenge our students to change the world — and the future of medicine — for the better. This class didn’t wait,” said Shekhar. “Their class oath, the first of its kind in our program’s 134-year history, speaks to the power and importance of clinical care and research in creating a more inclusive and just society, and I am excited to watch them put this promise into practice.”

The oath, which highlights issues like COVID-19, health care disparities, and racial injustice, is not merely about current events, said first-year medical student Tito Onyekweli, one of 12 students on the writing committee.

“We believe that our oath acknowledges the context of United States history and medicine and uses it to explain our current state,” Onyekweli said. “We used the past and present to clarify our future goals as physicians.”

The students acknowledged that they are beginning their careers in medicine at an unforgettable moment in history. The oath addresses championing diversity in medicine and society, being an ally to those of low socioeconomic status, and restoring trust in the health care community.

“We start our medical journey amidst the COVID-19 pandemic and a national civil rights movement reinvigorated by the killings of Breonna Taylor, George Floyd, and Ahmaud Arbery,” the oath begins. “We honor the 700,000+ lives lost to COVID-19, despite the sacrifices of health care workers.

We recognize the fundamental failings of our health care and political systems in serving vulnerable communities. This oath is the first step in our enduring commitment to repairing the injustices against those historically ignored and abused in medicine: Black patients, Indigenous patients, Patients of Color, and all marginalized populations who have received substandard care as a result of their identity and limited resources.

Acknowledging the privilege and responsibility that come with being a physician, I take this oath as a call to action to fulfill my duty to patients, to the medical profession, and to society.

UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE
CLASS OF 2024 OATH

As the entering class of 2020, we start our medical journey amidst the COVID-19 pandemic and a national civil rights movement reinvigorated by the killings of Breonna Taylor, George Floyd, and Ahmaud Arbery. We honor the 700,000+ lives lost to COVID-19, despite the sacrifices of health care workers.

We recognize the fundamental failings of our health care and political systems in serving vulnerable communities. This oath is the first step in our enduring commitment to repairing the injustices against those historically ignored and abused in medicine: Black patients, Indigenous patients, Patients of Color, and all marginalized populations who have received substandard care as a result of their identity and limited resources.

Acknowledging the privilege and responsibility that come with being a physician, I take this oath as a call to action to fulfill my duty to patients, to the medical profession, and to society.

DO NO HARM

THUS, I PLEDGE AS A PHYSICIAN AND LIFELONG STUDENT OF MEDICINE:

I will support and collaborate with my colleagues across disciplines and professions, while respecting the patient’s vital role on the health care team.

I will honor my physical, mental, and emotional health so as to not lessen the quality of care I provide.

I will carry on the legacy of my predecessors by mentoring the next generation of diverse physicians.

I will recognize the pivotal role of ethical research in the advancement of medicine and commit myself to endless scholarship with the ultimate goal of improving patient care.

I will care for my patients’ holistic well-being, not solely their pathology. With empathy, compassion, and humility, I will prioritize understanding each patient’s narrative, background, and experiences, while protecting privacy and autonomy.

I will champion diversity in both medicine and society and promote an inclusive environment by respecting the perspectives of others and relentlessly seeking to identify and eliminate my personal biases.

I will be an ally to those of low socioeconomic status, the BIPOC community, the LGBTQIA+ community, women/women, differently-abled individuals, and other underserved groups in order to dismantle the systemic racism and prejudice that medical professionals and society have perpetuated.

I will educate myself on social determinants of health in order to use my voice as a physician to advocate for a more equitable health care system from the local to the global level.

I will restore trust between the health care community and the population in which I serve by holding myself and others accountable and by combating misinformation in order to improve health literacy.

In making this oath, I embrace the ever-changing responsibilities of being a physician and pledge to uphold the integrity of the profession in the clinic and beyond.
The time is now for “disruptive change” (the good kind) in the curriculum for Pitt medical students. That assessment comes from School of Medicine educators, based on rapid changes in biomedical science, medical practice, pedagogical shifts, and student feedback.

“We continually upgrade the curriculum, but for larger changes you need a broader revival effort,” says Jason Rosenstock, MD, associate dean for medical education and professor of psychiatry, who spearheads the curriculum reform. “We also wanted to address some specific themes.”

One of the themes is interprofessional education. In a working environment, physicians interact with pharmacists, nurses, physical therapists, and other health professionals to provide the best care for patients. Interprofessional education blends students and learning from different health care fields. Rosenstock and others believe the current new construction to increase space and flexibility in Alan Magee Scaife Hall — the medical school’s home — is essential to the new styles of learning. In fact, Anantha Shekhar, MD, PhD, senior vice chancellor for the health sciences and Petersen Dean of Medicine, made changes to the layout plans soon after arriving in Pittsburgh in June 2020 to ensure suitability for interprofessional learning.

The change in space puts the medical school at the forefront of curriculum reform because it gives students ready access to different technologies, like point-of-care ultrasound, and also reinforces the school’s emphasis on smaller, more active learning groups.

Another focus is social medicine — social determinants in medicine, race and ethnicity in medicine, and LGBTQ-specific needs in medicine — a theme that has been growing in the curriculum but came to the forefront during this past year’s social justice movement.

“Our students, with the support and leadership of Dean Shekhar, have been leaders in this change, pushing us to make our curriculum more antiracist, more attentive to social medicine themes,” points out Rosenstock.

Instead of waiting for the curriculum reform to be launched in fall 2023, Pitt Med has already refreshed elements of the curriculum, including a class in winter 2021 to address bias and racism in medicine. An already existing social medicine focus will be strengthened throughout the curriculum, and another suggested plan is to include students’ projects examining health care disparities in Pittsburgh and working on solutions that involve collaboration with local agencies and other professionals.

Medical students have also asked educators to reexamine the first two years of the curriculum. Rosenstock says the committee is looking at condensing or making more efficient the basic science curriculum and at how assessment and feedback are given to students for them to be better prepared for exams and clerkship experiences.

The school is giving the curriculum update the time and effort it deserves, with more than 70 people on five subcommittees representing voices at every level, including basic science faculty, physician-educators, students, education and education technology experts, and student affairs, faculty affairs, and admissions personnel.

“Everything is affected by curriculum reform,” says Rosenstock. “Changes can affect the educators we need and the students we admit. It’s really the lifeblood of our institution.”
In effort to keep the University community healthy, Pitt, through the School of Medicine’s leadership, is working to monitor and contain the spread of COVID-19 on and off campus by using surveillance testing of asymptomatic students.

The strategy is designed to detect substantial shifts in trends of positive tests and helps give a sense of the prevalence of the virus in the larger community. Students are randomly selected—based on the work of statisticians and epidemiologists in the Graduate School of Public Health—to be tested for the virus.

Students receive an email from Pitt’s COVID-19 Medical Response Office—directed by infectious disease specialist John Williams, MD—notifying them that they have been selected to get tested. The percentage of the student population tested has aligned with recommendations from both the Centers for Disease Control and Prevention (CDC) and the American College Health Association. (Mass testing of asymptomatic students didn’t take place because it places undue stress on testing capacity, and lag time for results diminishes their medical relevance.)

For the fall semester, two cohorts of 280 randomly selected students on the Pittsburgh campus, who weren’t experiencing symptoms of COVID-19, were tested each week at the on-campus outdoor testing site. Testing takes only about 15 minutes, using a simple nasal swab. The students and their test results remain confidential.

If students test positive, they are isolated at a University-designated facility or at home. Contact tracing is also conducted to identify people who may have been exposed to the virus through close contact. During on-campus isolation, food is delivered to the students, and they are monitored daily by a health care professional who determines the most appropriate care.

For the semester, 7,766 students underwent surveillance testing; there were 33 positive tests, for an overall rate of 0.42% among asymptomatic students. Overall, there were approximately 700 students who tested positive, which included symptomatic students, many of whom were tested through student health services.

Who We Are

2020–21 Academic Year

599

MD students

327 (55%) women and 272 (45%) men; 211 (35%) Pennsylvania residents; with 18% underrepresented minority students

368 registrants in PhD programs

152 students in MS programs

34 students in certificate programs

For 2020,

7,177

applications for admission

734 prospective students interviewed for a first-year class of 149 students

2,424 regular and 2,190 volunteer faculty members; 81 are members of the Academy of Master Educators

SAFETY PROTOCOLS

BY THE NUMBERS

| We Are
<table>
<thead>
<tr>
<th>2020–21 Academic Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>599 MD students</td>
</tr>
<tr>
<td>327 (55%) women and 272 (45%) men; 211 (35%) Pennsylvania residents; with 18% underrepresented minority students</td>
</tr>
<tr>
<td>368 registrants in PhD programs</td>
</tr>
<tr>
<td>152 students in MS programs</td>
</tr>
<tr>
<td>34 students in certificate programs</td>
</tr>
</tbody>
</table>

For 2020,

7,177 applications for admission

734 prospective students interviewed for a first-year class of 149 students

2,424 regular and 2,190 volunteer faculty members; 81 are members of the Academy of Master Educators

On-Campus COVID-19 Testing

In effort to keep the University community healthy, Pitt, through the School of Medicine’s leadership, is working to monitor and contain the spread of COVID-19 on and off campus by using surveillance testing of asymptomatic students.

The strategy is designed to detect substantial shifts in trends of positive tests and helps give a sense of the prevalence of the virus in the larger community. Students are randomly selected—based on the work of statisticians and epidemiologists in the Graduate School of Public Health—to be tested for the virus.

Students receive an email from Pitt’s COVID-19 Medical Response Office—directed by infectious disease specialist John Williams, MD—notifying them that they have been selected to get tested. The percentage of the student population tested has aligned with recommendations from both the Centers for Disease Control and Prevention (CDC) and the American College Health Association. (Mass testing of asymptomatic students didn’t take place because it places undue stress on testing capacity, and lag time for results diminishes their medical relevance.)

For the fall semester, two cohorts of 280 randomly selected students on the Pittsburgh campus, who weren’t experiencing symptoms of COVID-19, were tested each week at the on-campus outdoor testing site. Testing takes only about 15 minutes, using a simple nasal swab. The students and their test results remain confidential.

If students test positive, they are isolated at a University-designated facility or at home. Contact tracing is also conducted to identify people who may have been exposed to the virus through close contact. During on-campus isolation, food is delivered to the students, and they are monitored daily by a health care professional who determines the most appropriate care.

For the semester, 7,766 students underwent surveillance testing; there were 33 positive tests, for an overall rate of 0.42% among asymptomatic students. Overall, there were approximately 700 students who tested positive, which included symptomatic students, many of whom were tested through student health services.
Snacks for STEM

For Camille Davis, the moment came during a rotation in pediatrics. A young patient, who looked familiar, was talking with her about how she wanted to be a physician or scientist when she grew up because she likes math and science. The patient described a program at her elementary school where medical students came in to discuss careers in medicine and STEM-related fields. Davis happened to be one of those visiting med students through the program, Snacks for STEM, which she co-created with fellow student Victoria Humphrey. The program is meant to provide children from underserved communities more exposure to STEM careers, while also helping to combat food insecurity.

A couple of years ago, after a Student National Medical Association meeting, Davis and Humphrey decided to act on their mutual passions for education, equality, and service. They created Snacks for STEM, a community service organization that gives healthy treats and information about STEM-related careers to children at Pittsburgh Fulton PreK-5, a city school with a percentage of its student body coming from underserved communities. In addition to being funded through allocations from campus organizations for community outreach, Snacks for STEM received a 2020 Martin Luther King Jr. Day of Service grant.

“We bring some physician tools and talk to the children about what we do and what the career possibilities are in fields like science, technology, or engineering to just open up their minds to different possibilities,” says Humphrey.
Davis and Humphrey, both now fourth-year med students, bring snacks to school because they know many families struggle with food insecurity, and they talk about professions in STEM because they know that representation matters. Both women had similar experiences in elementary school, where they saw someone who looked like them who worked in a STEM field.

“It’s so important that Black, Latinx, and historically marginalized populations have that exposure to positive representation, especially from someone who looks like them,” says Humphrey. “It reaffirms that if they can’t see you, they can’t be you.”

“Sometimes all it takes is a 30-second conversation for them to realize that they could be doctors, scientists, or engineers, too,” says Davis. “That’s how it worked for me when I was in their shoes in elementary school.”

While they cannot be in Pittsburgh Fulton PreK-5 right now because of the COVID-19 pandemic, Davis and Humphrey are figuring out new ways to help the community, including possibly putting the Snacks for STEM grant toward sponsoring some teachers’ educational wish list items.

Both Davis and Humphrey want to continue programs similar to Snacks for STEM in their residencies next year; and, wherever they end up, they also want to continue working toward representation and equality.

“I’m currently applying to pediatrics residency programs that focus on underserved populations,” says Davis. “I’ll be involved in increasing minority representation in medicine and helping Black and Brown children make it into STEM fields in general.”

Humphrey agrees and says, “I’m also passionate about increasing representation within my intended field of dermatology and working with underserved and minority communities through clinical practice and community outreach.”
In a University of Pittsburgh School of Medicine lab, a team of scientists is using zebrafish and a technology they developed—chemoptogenetic ablation of neuronal mitochondria—to understand the mechanisms underlying cell death in Parkinson’s disease. Simply put, they are studying how nerve cells die in neurodegenerative diseases. The development and use of this new technology encompasses the doctoral work of one team member, Binxuan Jiao (who uses the name “Jenny”).

“Jenny is extremely smart, works very hard, and is a great colleague,” says her mentor, Edward A. Burton, MD, DPhil, Professor of Movement Disorders in Neurology and associate professor of neurology.

For the past two years, Jiao has been working in Burton’s lab as a visiting research scholar, part of Pitt Med’s collaboration with Tsinghua University School of Medicine, one of China’s premier universities, through which the Pitt School of Medicine provides two years of mentored research training to qualifying students in Tsinghua’s eight-year MD program. The visiting scholars must complete a master’s-level thesis based on their research at Pitt as a requirement to receive their Tsinghua MD. In 2019, Tsinghua added an MD/PhD track to its medical school degree offerings for a selected, very small group of students to spend an additional year engaged in mentored research at Pitt, the results of which would qualify them for the PhD portion of their MD/PhD.

Of her years at Pitt, Jenny says, “Pitt has such a great environment for research. My mentor, Dr. Burton, is my career role model. He’s very helpful and supportive and has taught me a lot about how to do research and think like a scientist. My project is very exciting because it has just reached the point where I can dig deeply into the mechanisms underlying cell death in Parkinson’s disease.”

Jiao feels fortunate to have the opportunity to continue her studies at Pitt, especially in the midst of the COVID-19 pandemic.

“Tough things will pass eventually, while my experience here will stay with me for a lifetime,” she says.
Nurturing Underrepresented Undergrads in Biomedical Sciences

The college student-to-scientist career pipeline is not always constructed the same for all students, especially students who are underrepresented minorities. Some students know they like science but haven’t had the exposure or formative experiences that help them solidify a decision to pursue it as a career. To capture these students, faculty members and graduate students in the School of Medicine’s Program in Microbiology and Immunology (PMI) developed and fast-tracked the Microbiology and Immunology Diversity (MID) Scholars Program.

With financial support and enthusiasm from Anantha Shekhar, MD, PhD, senior vice chancellor for the health sciences and Petersen Dean of Medicine, and the Departments of Immunology and of Microbiology and Molecular Genetics, the program moved from concept to four funded scholars in just a few months (four additional scholars will be selected to begin the program in the 2021 spring semester). Similar programs exist at the University, but engaging students as undergraduates makes the MID program unique.

“We created this program at the undergraduate level because it’s during this time when students who have an interest in biomedical sciences get lost because they don’t get resources or support,” says Partha Biswas, PhD, associate professor of medicine (Division of Rheumatology and Clinical Immunology) and of immunology and program director. “We want to pick them up early on, put them in a research lab, introduce them to biomedical science, and see how their interest grows. This support at the initial level is important because, by the time their undergraduate years are finished, their interest in science may not have been supported, and they’ve already moved away from science as a career.”

Students from underrepresented minority groups accepted into the MID program are funded for two years in order to complete long-term basic, clinical, and/or translational research projects within the graduate program in microbiology and immunology under the mentorship of experienced researchers and principal investigators. Scholars also receive peer-based mentoring and career advice from PMI graduate students, are encouraged to attend career and professional training sessions, and receive travel awards to present their projects at local and national conferences.

“The idea for the MID program came from PMI graduate students and was also borne out of the social justice movement in the past few months,” says Biswas. “We want to nurture and mentor these scholars and their interests. There has been a tremendous enthusiasm for the program so far, and now we’re looking at long-term sustainability and how to reach more students.”
De-liver-ing

Using skin cells from human volunteers, School of Medicine researchers created fully functional mini livers, which they transplanted into rats. These lab-made organs survived for four days inside their animal hosts. Alejandro Soto-Gutiérrez, MD, PhD, associate professor of pathology, and colleagues, wrote in Cell Reports.

“Seeing that little human organ there inside the animal—brown, looking like a liver—that was pretty cool,” said Soto-Gutiérrez, who is also affiliated faculty with the McGowan Institute for Regenerative Medicine and the Pittsburgh Liver Research Center.

These mini livers secrete bile acids and urea like a normal liver. Soto-Gutiérrez and colleagues reprogrammed human skin cells into stem cells, coaxed those stem cells to become various types of liver cells, and then seeded those human liver cells into a decellularized rat liver, completing what would normally be a two-year maturation process in under a month.

Four days after the lab-grown livers were transplanted into rats bred to resist organ rejection, researchers investigated how well the implants were functioning. Although blood-flow problems had developed within and around the graft, the transplanted mini livers worked, and human liver proteins were detectable in the rats’ blood.

Significant challenges, including long-term survival and safety issues, remain, the authors noted.

“The long-term goal is to create organs that can replace organ donation; but in the near future, I see this as a bridge to transplant,” Soto-Gutiérrez said. “For instance, in acute liver failure, you might just need hepatic boost for a while instead of a whole new liver.”

“The long-term goal is to create organs that can replace organ donation; but in the near future, I see this as a bridge to transplant.”

Alejandro Soto-Gutiérrez, MD, PhD
In what is often a life-or-death option for treating liver disease, living-donor transplants can improve outcomes and survival rates and reduce costs compared to deceased-donor transplants, the more common procedure.

Nationally, of the 8,000 liver transplants performed annually, less than 5% of operations include living donors, which involves removing a portion of the donor’s liver that grows back to full size and function within eight to 10 weeks.

About 25% of people on the national waiting list die each year waiting for a transplant and experience poorer health at the time of transplant because of the prolonged wait. For these more than 14,000 people, living-donor transplant could be a viable, preferable option.

“The consequences for patients on the waiting list can mean the difference between life and death because the longer they are waiting, the sicker they become,” says Abhinav Humar, MD, Thomas E. Starzl Professor of Transplantation Surgery and clinical director of the Thomas E. Starzl Transplantation Institute. “Living-donor liver transplants, in tandem with deceased-donor liver transplants, represent an opportunity to significantly decrease the risk of wait-list mortality and give us the ability to transplant a person sooner.”

In a retrospective review published in the Annals of Surgery, Humar and other Pitt researchers evaluated 245 adult living-donor liver transplant recipients and 592 deceased-donor recipients whose procedures were performed over the last 10 years at UPMC, which houses the country’s largest living-donor liver transplant program. Here’s what they found:

- Living-donor liver transplants’ three-year patient survival stood at 86%, hospital stays averaged 11 days, and there was a 53% likelihood of needing intraoperative blood transfusion and a 1.6% likelihood of needing post-transplant dialysis. In comparison, for deceased-donor transplants, the recipients’ three-year survival was 80%, hospital stays averaged 13 days, and there was a 78% likelihood of needing intraoperative blood transfusion and a 7.4% likelihood of needing post-transplant dialysis. In addition, hospital costs were also 29.5% lower for living-donor recipients.

- Patients and donors were followed for at least two years post-transplant. There were no deaths among the living donors, who had an overall complication rate of 20%.

- “Living-donor liver transplant should be considered the first and best option for most patients with liver disease,” Humar says. “It is not only an option for those on the waiting list but could perhaps offset the fact that not everyone who may benefit from transplant qualifies to receive a deceased-donor transplant based on today’s current rules of allocation.”
I’d like a second opinion...

One that isn’t based on science!
Control of Cytokinesis by β-adrenergic Receptors Indicates an Approach for Regulating Cardiomyocyte Endowment
Beta blocker drugs could stimulate cardiomyocyte cell division in infants with congenital heart defects to improve heart function.

Evolutionary Pathways to Antibiotic Resistance Are Dependent Upon Environmental Structure and Bacterial Lifestyle
Whether bacteria live as independent cells or grow into communal biofilms determines how they evolve antibiotic resistance, which could expose vulnerabilities in drug-resistant infections.

Perturbations in Imprinted Methylation from Assisted Reproductive Technologies but not Advanced Maternal Age in Mouse Preimplantation Embryos
Fertility treatments, not advanced maternal age, may cause the epigenetic changes associated with Beckwith-Wiedemann, Silver-Russell, and Angelman syndromes, as shown in mice.

Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study
2017 data reveals that sepsis—the body’s potentially fatal response to infection that injures its own tissues and organs—is associated with one in five deaths worldwide, largely in low- or middle-income countries.

Beyond detecting DNA damage caused by ultraviolet exposure, the ultraviolet-damaged DNA-binding (UV-DDB) protein can also scout for oxidative DNA damage and, in turn, help DNA repair molecules to fix damage often buried deep in chromosomes.
Regenerating Damaged Muscle

Regrowing muscle tissue is a much sought-after ability because, when more than 20% of a muscle is damaged, as is common in combat injuries, tissue can’t regenerate, and a stiff scar forms. That’s why a $22 million Defense Advanced Research Projects Agency (DARPA) grant is supporting a multi-institutional research team, led by Pitt, to develop a device that combines artificial intelligence, bioelectronics, and regenerative medicine to regrow muscle tissue.

Diversity and Palliative Care

The importance of palliative care is reflected in its expanded availability in hospitals across the country. However, palliative care specialists are most often not minorities. In response, a $250,000 award from The Arthur Vining Davis Foundations is supporting an initiative for minority physicians led by the UPMC Palliative and Supportive Institute and School of Medicine faculty to foster career paths in palliative care at minority-serving medical schools. To do so, the program, in part, sends UPMC palliative care physicians to those institutions for mentoring faculty on how to better incorporate palliative care into student and resident education.

Funding Vaccine Development

To help combat today’s pandemic, an international, academia–industry partnership has generated funding for SARS-CoV-2 vaccine development. The intergovernmental organization Coalition for Epidemic Preparedness Innovations (CEPI) has committed nearly $5 million to a consortium led by the Institut Pasteur research center in Paris, collaborating with Themis in Vienna and Pitt’s Center for Vaccine Research. The funding aims to support vaccine research and phase I clinical trial rollout.

Rethinking Research (and Care)

There is a time for tradition and a time—a now—for transformation. To meet the challenges of deadly diseases like COVID-19, H1N1, and sepsis, Pitt’s School of Medicine and UPMC are advancing research and clinical practice with a new twist on research: randomized trials concurrent with patient care.

Centered in the newly formed Office of Health Care Innovation, the initiative is headed by Derek Angus, MD, MPH, Pitt’s inaugural associate vice chancellor for health care innovation and UPMC’s chief health care innovation officer.

“The goal must be a system that has a more integrated approach to learning while doing,” Angus wrote in a May edition of the Journal of the American Medical Association, calling on clinicians and researchers to “lean in” and expand their approaches to testing and trying new therapeutics.

“We like to use the analogy of a stadium,” explains pulmonologist Christopher Seymour, MD, MSc, one of a cadre of physician-scientists who are associated faculty in the new office. “In traditional clinical trials, you build a stadium, you play one game, and you tear it down. Our approach is to build a stadium and play lots of games.”

Formally known as the Randomized Embedded Multifactorial Adaptive Platform (REMAP) (see page 8), the approach is less program and more purpose—one that percolates through day-to-day clinical decisions in patient care and includes quality-improvement activities, new treatment paradigms, and computer modeling, all connected with electronic health records.

In essence, the new office is a conduit for innovation that unites the extensive biomedical sciences, public health, and health policy research based at Pitt with UPMC’s vast clinical and commercial expertise. Using pretrial simulations, various therapeutic, behavioral, or quality improvement strategies can be explored to identify trial designs that can quickly be adapted to changing conditions.

“We work closely with the Clinical and Translational Science Institute and Department of Biomedical Informatics at Pitt, as well as UPMC Enterprises and clinical analytics, to take the research that Pitt wants to test in an integrated, multicenter way to move the science forward,” says Seymour, associate professor of critical care medicine.

“It’s exciting,” he adds. “There aren’t too many opportunities in the U.S. where a health care system and clinical efforts can fuse with research.”
Bahar Reflects on Coveted NAS Honor for Scientists

Ivet Bahar, PhD, Distinguished Professor, John K. Vries Professor, and chair of computational and systems biology, discusses her 2020 election to the National Academy of Sciences (NAS), one of the highest honors a scientist can receive. Responses have been edited for length and clarity.

What was the first thing you said when you found out and to whom did you say it?

A colleague congratulated me by email. By mistake, I looked at the American Academy of Arts and Sciences online and didn’t see my name. [Pitt structural biology department chair and NAS member] Angela Gronenborn called, and I kept telling her that she was mistaken—until I saw a flood of congratulatory email messages from friends/colleagues who are NAS members. I ran to my husband and elder son and told them I couldn’t think of any scientific recognition that could make me happier.

Your research in protein dynamics has many potential applications. What are you working on now and why?

I have always wanted to understand how proteins and biomolecular systems undergo structural changes during their biological activities. These changes are called conformational dynamics. We developed network models and analytical methods for predicting the structural changes that proteins can undergo while retaining their fold and stability. Establishing the link between biomolecular structure and function, through dynamics, is crucial. Understanding the dynamic capabilities of proteins encoded by their structure also opens the way to designing modulators of function that would alter the dynamics for therapeutic purposes—hence the broad applicability of our methods in drug design and discovery.

What future directions do you anticipate for your investigations?

I have always been driven by translation to biomedical applications. A machine-learning algorithm we developed (Ponzoni and Bahar, PNAS 2018) is now available in a new server, called Rhapsody. Our plan is to further extend it to facilitate applications in precision medicine. We also think implementing fundamental theory and methods into computational tools/software is very important for enabling efficient use by the broader community. For example, our ProDy interface for predicting and analyzing protein dynamics has been downloaded more than 2 million times to date and has more than 130,000 users worldwide. New components to ProDy make it applicable to a wide range of areas from molecular mechanics to pharmacology.

In the past decade, I’ve focused on understanding neurobiological systems dynamics and, specifically, on neurotransmission at the molecular level—how neurotransmitters are transported by membrane proteins across cell membranes. Understanding how the deregulation of neurotransmitter transport and signaling may lead to neurodegenerative disorders (including drug addiction) is an important topic that needs significant work.

Other topics of interest are modeling protein-lipid interactions, including the molecular and cellular implications of lipid peroxidation events, understanding at the molecular level how the adaptive immune system responds to pathogens, and combining molecular- and systems-level quantitative methods for drug discovery and repurposing. For example, we recently started to understand the molecular origin of the cytokine storm observed in some severe COVID-19 patients, including children with multisystem inflammatory syndrome (Chen, et al., PNAS 2020) in collaboration with Cedars-Sinai.
Since Kacey Marra, PhD, and colleagues reported successfully regenerating portions of damaged nerves using a polymer tube filled with growth-promoting protein in January 2020, the technology has inched a bit closer to clinical trials in humans thanks to growth of an entrepreneurial kind.

“We have a startup and have licensed the technology from Pitt,” says Marra, a professor of plastic surgery and core faculty member of the joint Pitt-UPMC McGowan Institute for Regenerative Medicine.

So far, tests in monkeys show that the biodegradable nerve guide can promote enough nerve growth to bridge a two-inch gap between the nerve stump and its target muscle. The guide has proven “comparable to, and in some ways better than, a nerve graft,” says Marra.

While the company, Nerve Repair Technologies, seeks U.S. Food and Drug Administration approval for a clinical trial in humans, Marra pursues funding. “We’ve licensed five patents and have a portfolio of products.” Finding angel investors is next on the agenda.

The U.S. Department of Defense has funded the Marra team for the past 12 years and has great interest in seeing their work progress. Half of wounded American soldiers return home with injuries to their arms and legs, which aren’t well protected by body armor, often resulting in damaged nerves and disability. Among civilians, car crashes, machinery accidents, cancer treatment, diabetes, and even birth trauma can cause significant nerve damage, affecting more than 20 million Americans.

Options for a clinical trial include enrolling a few patients or doing a larger, multisite trial in collaboration with Walter Reed National Military Medical Center. Peripheral nerves can regrow up to a third of an inch on their own; but if the damaged section is longer than that, the nerve can get knotted into a painful ball called a neuroma.

The most common treatment for longer segments of nerve damage is to remove a skinny sensory nerve at the back of the leg—which causes numbness in the leg and other complications but has the least chance of being missed—chop it into thirds, bundle the pieces together, and then sew them to the end of the damaged motor nerve, usually in the arm. But only about 40% to 60% of motor function typically returns.

“It’s like you’re replacing a piece of linguine with a bundle of angel hair pasta,” Marra says. “It just doesn’t work as well.”

Marra’s nerve guide, by contrast, returned about 80% of fine motor control in the thumbs of four monkeys. “Now that we feel we’ve developed a successful nerve tube, we’re focusing our studies on therapies for the de-enervated muscle to restore function even more,” she says, adding that previous experiments in rats (published in Muscle and Nerve, May 2019) found efficacy in restoring some muscle function when rats were injected with adipose-derived stem cells after nerve injury.
(Above) Microspheres containing a neural growth factor adhering to the nerve conduit during the manufacturing process. A cross-section image of the nerve conduit embedded in microspheres. (Left) Photo of the 5.2-cm nerve guide.

“It’s like you’re replacing a piece of linguine with a bundle of angel hair pasta. It just doesn’t work as well.”

Kacey Marra, PhD
Space is the final frontier for explorers; and, increasingly, it is becoming a place for new commercial enterprises. For the biomedical industry, researchers are working to leverage microgravity to create products for patients on Earth.

The International Space Station (ISS) U.S. National Laboratory has teamed up with Pitt’s McGowan Institute for Regenerative Medicine to map out the most promising technologies for biomedical development and manufacturing in low Earth orbit. The alliance is a key effort for the ISS National Laboratory as it works across many technological areas to increase the commercial use of space and builds on decades of experimentation performed on the space station.

The ISS National Laboratory and the McGowan Institute have enlisted a broad range of industry partners, other academic research centers, and government agencies to further expand the scope of medical technology development on board the ISS and to focus on new microgravity research to demonstrate the value of the space environment.

McGowan Institute director and Distinguished Professor of Surgery William Wagner, PhD, says that the space station offers a unique platform for regenerative medicine. The microgravity environment distinctly affects the properties of certain materials and substances, enabling processes not possible on Earth. Stem cells, for example, behave and reproduce differently in low gravity, Wagner says, and growing them in space might bolster cellular therapies for a variety of diseases and conditions like traumatic brain injury and type I diabetes.

Microgravity also permits 3D printing of complex tissue structures that would collapse or deform under full gravity. Miniaturized organ models reproduce certain diseases in microgravity, potentially permitting the study of treatments for conditions such as kidney failure and osteoporosis.

Given the cost and resources required to conduct space research, the partnership also focuses on rigorous business analysis to determine which areas of medical technology development are most likely to benefit patients on Earth.
Improving TB Vaccination Effectiveness

Improving the protective power of the tuberculosis vaccine could dramatically reduce TB burden and deaths. In recent years, tuberculosis has killed more people across the world than any other infectious disease, even though a vaccine is widely available. The Bacille Calmette-Guérin (BCG) tuberculosis vaccine uses a live, weakened form of TB bacteria and is typically injected under the skin. But the vaccine is not very effective and leaves some susceptible to infection.

Simply changing the vaccine’s route of administration might drastically boost its effectiveness, however. Describing their work in Nature, researchers from Pitt and the National Institute of Allergy and Infectious Diseases found that, in nonhuman primates, intravenous vaccination produced superior TB protection.

“The reason the intravenous route is so effective is that the vaccine travels quickly through the bloodstream to the lungs, the lymph nodes, and the spleen, and it primes the T cells before it gets killed,” explains senior author JoAnne Flynn, PhD, Distinguished Professor of Microbiology and Molecular Genetics. “When we compared the lungs of animals given the vaccine intravenously versus the standard route, we saw a 100,000-fold reduction in bacterial burden. Nine out of 10 animals showed no inflammation in their lungs.”

To test the method of administration’s effects, Flynn and collaborators separated the nonhuman primates into groups: unvaccinated, standard human injection, stronger dose and standard injection, mist, injection plus mist, and stronger dose administered intravenously. Six months later, the researchers exposed the nonhuman primates to TB and monitored them for infection.

The intravenously vaccinated animals all had BCG and activated T cells in their lung tissue. The other animals had no detectable BCG in lung tissue, and their T-cell responses were only modest. Virtually no TB bacteria were found in the lungs of the intravenously vaccinated animals, and only one primate in this group developed lung inflammation or disease.

The researchers hope to eventually test intravenous TB vaccination in humans, but they’re first studying whether lower doses of intravenous BCG could provide equally robust TB protection. The larger dose can cause side effects, primarily temporary lung inflammation. Before human translation can occur, however, the method must also be proven safe and practical; intravenous vaccination requires more skill to administer and can also more readily cause infection.
Knowing exactly how the innate immune system plays a role opens the door to developing very specific drugs, which allows us to move away from broadly immunosuppressive drugs that have significant side effects.”

Fadi Lakkis, MD

Minimizing Chronic Organ Rejection

breakthrough immune system finding could help minimize organ transplantation complications. While transplants have saved countless lives, for some patients, chronic rejection of transplanted organs can cause future complications. It’s been almost six decades since immunosuppressive drugs made organ transplantation a clinical reality, yet many organ recipients will still need a second transplant in their lifetimes.

Using a genetically modified mouse model, Pitt researchers and their collaborators at Houston Methodist Hospital recently found that the innate immune system may be able to "remember" foreign cells — an ability previously thought exclusive to the adaptive immune system. This finding, described in Science, could ultimately help prolong transplanted-tissue survival and prevent the need for second transplants.

“Knowing exactly how the innate immune system plays a role opens the door to developing very specific drugs, which allows us to move away from broadly immunosuppressive drugs that have significant side effects,” says senior author Fadi Lakkis, MD, Distinguished Professor of Surgery, Frank and Athena Sarris Professor of Transplantation Biology, and scientific director of the Starzl Transplantation Institute.

Innate immune cells are the first to detect any foreign agents in the body; and they activate the adaptive immune system, which "remembers" various invading viruses, bacteria, and other agents in order to quickly impede them if they reemerge. This process is vital to immunity; but it also results in transplanted organs’ eventual rejection, even with immunosuppressive drugs.

Innate immune cells like monocytes and macrophages haven’t been thought to possess immunological memory. However, the researchers found that these cells’ capacity to remember foreign tissues is as specific as that of adaptive immune cells, like T cells and B cells.

Using molecular and genetic analyses, the researchers showed that the paired Ig-like receptor-A (PIR-A) molecules were essential to the innate immune cells’ memory. By blocking PIR-A molecules with a synthetic protein or genetically removing them from the host animal, the cells’ memory was abolished, enabling transplanted tissues to survive for much longer. Essentially, the murine innate immune cells, after being exposed to foreign tissue, could initiate an immune response if exposed to that same foreign tissue again.

Beyond improving transplant outcomes, this finding could have implications for treating cancer, autoimmune conditions, and other diseases, says senior author Martin Oberbarnscheidt, MD, PhD, assistant professor of surgery. Further understanding of innate immune memory mechanisms could lead to developing targets for improving effective immune responses against tumors or restoring self-tolerance in autoimmune diseases.
With grateful appreciation for their generosity, we acknowledge the following individual, corporate, and foundation donors whose contributions of $1,000 or more to the University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, and UPMC Western Psychiatric Hospital between July 1, 2019, and June 30, 2020, have supported us in our academic, research, and clinical missions.

Thank you.
When Llewellyn Hyacinthe, MD, MBA, was a medical student at the University of Pittsburgh, a mentor unexpectedly came into his life at a time when he most needed him. He believes that this mentor, Myrven Caines, MD, helped him stay at Pitt, get his medical degree, and enjoy a decades-long career as a physician and educator.

Now associate professor and director of operations, Department of Urology, SUNY Downstate Health Sciences University, and staff urologist, University Hospital of Brooklyn, Dr. Hyacinthe describes his first year of medical school as a “daily struggle.” He didn’t grow up with a particular interest in science or medicine; he just had a desire to help people and solve problems, and his parents were keen on him being a doctor.

“Probably like many medical students, I was having trouble putting together all this data they were throwing at us every day,” recalls Dr. Hyacinthe. “I really felt isolated and didn’t feel as if there were any teaching faculty members I could go to to help me transform all this data into information that would help me become a physician.”

In Dr. Hyacinthe’s second year, Dr. Caines contacted him and other Black and Brown students in his class. He began meeting with them for an hour over lunch in his office every day, after their morning lectures and before their afternoon lab classes.

“My first-year knowledge was lacking,” says Dr. Hyacinthe. “So, we’d review organ systems and disease processes, and he helped bring me up to speed. He gave me the pathway to catch up and to build up that foundation so I could move forward. Being able to pull all that information together gave me confidence that I just didn’t have. More than anything, he gave us support and reassurance. I’m not sure I would’ve finished Pitt if not for his intervention.”

At the time, Dr. Caines was an associate professor of pathology and associate director of laboratories for the Pittsburgh VA Medical Center and had his own busy schedule. Jagjit Singh, MD, assistant professor of pathology, is a former colleague of Dr. Caines and knew him in the mid-1980s when Dr. Caines was mentoring Dr. Hyacinthe.

“He was gentle, calm, had a Zen-like persona, and a warm, caring personality,” remembers Dr. Singh. “He was a people person; and I sought advice from him, especially when he held his administrative role at the VA. He was a great listener and was fair and impartial in his feedback.”

Dr. Singh has since heard about Dr. Caines’ own experiences when he arrived in Pittsburgh from Trinidad and thinks they may have influenced Dr. Caines’ desire to help other students. In an interview for Pittsburgh History in 1995, Dr. Caines describes his reception by colleagues at the School of Medicine in the late 1960s:

“I ran straight into racism full, square, and center. There were some white professors in the department who point-blank refused to teach me anything, who hid materials from me, and it was very clear that their intentions were that I should not succeed. My reaction to them was probably similar to what you would find from most immigrants, which is that we viewed these as roadblocks [that] one would have to overcome. So my philosophy was to turn every negative experience into a positive experience.”

Dr. Hyacinthe benefitted from Dr. Caines’ desire to turn his negative experiences into positive ones for the students he helped. To honor the commitment and dedication of Dr. Caines, who died in 2014, Dr. Hyacinthe has established the Myrven Joseph Caines, MD, Fund for Medical Diversity to support the School of Medicine’s Office of Diversity, Equity, and Inclusion.

“From my position now, I realize how much of a sacrifice he made for us. I have enjoyed virtually every day of my career as a physician, as a urologist, so I’m very thankful. I can’t imagine ever doing anything else,” says Dr. Hyacinthe. “My main motivation is to just pay it forward; it’s impossible to pay it back. I look around and African American males—we’re still a rare species in medicine, unfortunately, so I’m trying to do my part to address it. Dr. Caines certainly did his part.”
INDIVIDUALS

Venus A. Hadeed, MD, and Antonio A. Achkar, MD
Nancy L. Atitken
Yuki Aiyama, MD
Judith L. Albert, MD, and Anthony B. Fiorillo, MD
Saud S. Albugami
Gayle Martin and William C. Alexander
Karen A. Alfano and Nicholas J. Alfano
Nourah A. M. Th. Alghanem and
Ebraheem J. Alghanem
Jameel Abdulla Al-Jishi, PhD
Judith L. Albert, MD, and Anthony B. Anton
Carolyn V. Baney and Richard N. Barr
Robert Bargiel
Robert M. Arnold, MD
Maryrose Benkoski Block
Mrs. Donald Blechman
Karen L. Blumen, Esquire
Gertrude Blumenschein, MD
Michael J. Bonidie, MD
Mary Ann and Chuck Bogosta
Mary A. Borenius and Thomas G. Borenius
Brian B. Borel
Robert W. Kraemer and Marguerite
Ebraheem J. Alghanem
Robert W. Bregger, MD
Ellen Brenner and Laurence
Harvey Brenner, MD
Nancy B. Brent, MD, and David A.
Brent, MD
Sheryl Broadhurst and Jeffrey
Sherwood Broadhurst
Barbara Ann Brooks
Loretta A. Brooks and Daniel H.
Brooks, MD
David E. Brougher, MD
Rachel F. Haft, MD, and Jeffrey S.
Brown, MD
Martha I. Bruce, PhD
Jill and Adam Brufsky, MD, PhD
Jodi and Seth Brufsky
Kay M. Brummond, PhD
Kathryn F. Bryson and Michael
Bryson
Carol Olimert and Alan P. Burckin, MD
Lisa and John Burke
Katherine A. Burt and Shawn T.
Burt, MD
Carolyn M. Byham and William C.
Byham, MD
Ann W. Cahouet
Fredrick R. Nene and Candace Cain
Michael Andrew Caines, MD
Michael Cognetti, MD, and David M.
Cognetti, MD
Nancy and Steve Cohen
Seija L. Cohen
Scott Coker
Marcia R. Colvin and Dr. David F.
Colvin
Gail F. Combs and William G.
Combs, MD
Thomas D. Ziegler and Colleen
Conner Ziegler
William S. Conover II
Patricia L. Conrad and John F. Conrad
Loretta L. Conti and Philip P. Conti Jr.

*BEFORE AN INDIVIDUAL’S NAME INDICATES THE PERSON IS DECEASED

39

*BEFORE AN INDIVIDUAL’S NAME INDICATES THE PERSON IS DECEASED
Annette M. Luchini and Gary R. Jhong and Anita B. Legler and Robert C. Legler
Amy Mann and Gavin Mann
Jeanne F. Fritch and Ella E. Lyons
Chih-Tsung Kang, PhD, and
Evelyn Pei Hua Li
Jean M. Loubeau, MD
Frank J. Lotito
Rose D. Losken and Wolfgang Losken, MD
Trudy L. McAuley and Clyde E. McCartney
Sarah J. McCarthy-Reiland
Grace F. Messer, CRUT
Michael F. Michels, MD, and Mary
Kristin E. Novak and Dr. Justin M. Nachwalter, MD
Shelley C. Mix and Troy D. Mix
Raymond J. Moncini
Anita P. Legler and Robert C. Legler
Jean M. Malinic, DMD
Joel Lennen and Kathleen C. Lennen, Esquire
Chronis Hazi Manolis and Diane A. Manolis
Althea McCalmont
Sally Levin
Cynthia B. Lesker
Sissy Lieberman and William K. Lieberman, Trustee
Carol Limbach and Mark Limbach
Annette McCoy, MD, and
Antonia M. McCoy, MD
Lawrence W. N. Weber, MD, and Ellen M. Mandel, MD
Claudia Mandurino
Daniel Mann
Amy Mann and Gavin Mann
Richard M. Mann, MD
Cherilyn Manzari and H. J. Manzari
Cheri J. Manzinger and Joseph Manzinger Jr.
Janet R. Markel
Pamela E. Markovitz and Alvin Markovitz, MD, FACP
Niko Marks and Stanley M. Marks, MD
Myrna Marlowe
Timothy B. Morrow and Carol A. Marmo
Lucine O. Marous
* Curtis R. Marquard
* Helen B. Marquard
Sheldon Marstine
Cathy A. Mary and John Mary
Carl Maskiewicz
Myrna R. Mason and Mark E. Mason
Michael W. Mason
Alina Sanson Massaro and Joseph A. Massaro III
John R. Pearson and Margaret M. Materre
Rachel J. Givelber, MD, and Michael A. Mathier, MD
Steve Matusch, PEng, MBA
Elizabeth Maxwell-Schmidt, MD
Rebekah Mazariogios and George V. Mazariogios, MD
The Honorable Romano L. Mazzoli
Andrew M. McAlpin, MD
Trudi L. McAuley and Clyde E. McAuley, MD
* Alethea McCalmont
Cynthia McCann and Robert J. McCann
Pamela K. McCarter and Jackson H. McCarter, MD
Sarah J. McCarthy-Reiland
Mary M. McCarty
Paula K. McCarty and Thomas J. McCarty
Bruce A. McClane, PhD
Jennifer McClure and A. Gregory McClore, MD
Helen A. McConnell and John R. McConnell, MD
Marella McConnell and Calvin W. McConnell
Elizabeth H. McCormick and Jeffrey M. McCormick
Anne-Marie B. McCoy, MD, and Matthew S. McCoy, MD
Katharine G. McCullough and The Honorable Samuel A. McCullough
Maria McCutchen and Andrew McCutchen
Nancy A. McDonald
Nancy C. McGinley
Audrey A. McGinnis and Gerald E. McGinnis
Beverly B. McGowan and John A. McGowan, MD
James H. McGraw IV and Jane Love McGraw
Susan McGuinn and Martin G. McGuinn
Christine L. McHenry, MD
David McCanish
Janet McCanish and Dennis McCanish
William McKendree
Charles C. Cohen and Michele M. McKenney, MPH, ID
Carrie McKenzie
McKernan Living Trust
Tommie M. McLaughlin
Stephen J. McMahon and Deborah K. McMahon, MD
Timothy L. McNickle and Cynthia A. McNickle
Patric R. McPoland, MD
Cynthia S. McQuillis and Robert F. McQuillis
Kathleen W. McSorley and David McSorley
Diana Pruner and Daniel A. Medalle, MD
Anne R. Medsger and Thomas A. Medsger Jr., MD
Amita D. Mehta, MD, and Dhaval R. Mehta, MD
Arthur S. Levine, MD, and Linda S. Melada
Helen Mendel
Richard B. Meredith Jr., MD
Tracey Messer
Michael F. Michels, MD, and Mary
Nancy J. Minshew, MD
Martha Mitchell and Charlie Mitchell
Shelley C. Mix and Troy D. Mix
Raymond J. Moncini
Jane C. Montgomery and Derwood H. Montgomery
Harry B. Moore
Delynie J. Myers, MD, and John J. Moosy, MD
Jeffrey L. Morby and Jacqueline C. Morby
Beejee Morrison
Sally Moses
Elizabeth H. Moy, MD
John M. Musacchio and Linda L. Musacchio
Volker Musahl, MD, and Tina Musahl, MD
Barbara L. Myers and Eugene N. Myers, MD
Wendi Nachwalter and Richard S. Nachwalter, MD
Marlene Naft
Mary J. Nagel and John R. Nagel, MD
Guy M. Nardella Jr., MD, and Dorothy P. Nardella
Patrick Narduzzi
Constance Nassif and James A. Nassif
Marie and David Navikas
Susie Neal and David J. Neal
Jenna Neiterman
Bruce Nelson
Joel B. Nelson, MD
Ross J. Nese Jr. and Carol D. Nese
Dana Schaer Nestel and Daniel A. Nestel
John W. Newman
Julie Lendvay Newton and Douglas K. Newton
Mary W. Nice and John A. Nice
Kerri Nielsen and Thomas Nielsen
Theresa L. Nimick-Whiteside, PhD
Marjorie J. Nord and Roland E. Nord, MD
Kristin E. Novak and Dr. Justin M. Novak
Beatrix Delgado Ochoa and Juan B. Ochoa, MD
Marsha R. Oeler and Robert P. Oeler
Lois A. Pounds Oliver, MD
Tom W. Olofson
Melinda M. Olson and David C. Olson
Bert W. O’Malley, MD
Pamela Piezger and Scott Optiz
Corie A. Opperman and Fane W. Opperman
*BEFORE AN INDIVIDUAL’S NAME INDICATES THE PERSON IS DECEASED
PROFILE: JOHN TIPPINS

Family Foundation Remembers Its Patriarch

John Tippins comes from a family that knows well the value of hard work and innovation. His grandfather, Leon Tippins, the first of 11 children to go to college, moved to Pittsburgh to find a job in his field of electrical engineering. In 1923, he ended up starting a small family business, Tippins Machinery Co., in reconditioning used mining machinery. John’s father, George, was also an electrical engineer.

When George returned to Pittsburgh from serving in World War II, he wanted to help his father build the company. His father let him take the lead in 1946, and George built a two-employee company into a nearly 300-employee strong company that became the world leader in refurbishing, designing, and building rolling mills and other equipment for the steel and metals industries. By the time he retired, he held more than a dozen patents for machines and metals processes.

George Tippins was also known for being the major investor in the acquisition of Allegheny Ludlum Steel Corporation, the nation’s largest stainless steel producer at the time, from its parent, Allegheny Ludlum Industries. His investment was widely credited as saving the steel company from being sold to out-of-state financiers who planned to close it and sell it piecemeal to foreign companies. He was board chair and majority owner of Allegheny Ludlum Steel from 1980 through 1986, by which time the company was once more successful and growing into a world leader in the stainless and titanium steel markets.

Sadly, George Tippins was diagnosed with Alzheimer’s disease in his later years. Even though he knew it was too late for him to benefit, he had the foresight, again, to create a family foundation before he died in 2005.

“He wanted to endow the foundation to do good things,” says John (now a managing director at Stonewood Capital Management, after the family business was sold). “The three areas the foundation supports are entrepreneurialism (one of the recipients is the University of Pittsburgh’s Institute for Entrepreneurial Excellence), general philanthropy, and Alzheimer’s disease research.”

Though the Tippins Family Foundation supports numerous Alzheimer’s disease research initiatives, it is a large supporter of a research powerhouse in its own backyard, the University of Pittsburgh Alzheimer’s Disease Research Center (ADRC), led by Oscar Lopez, MD, Levidow-Pittsburgh Foundation Professor of Alzheimer’s Disease and Dementia Disorders in the Department of Neurology, professor of neurology and of psychiatry, School of Medicine, and of clinical and translational science.

Pitt scientists know more than a little about hard work and innovation, too. In addition to other research advances, Pitt is the home of Pittsburgh Compound B (PiB), invented and developed by a team of researchers led by Chester Mathis, PhD, Distinguished Professor of Radiology and Professor of Radiology PET Research, and William Klunk, MD, PhD, Distinguished Professor of Psychiatry, Levidow-Pittsburgh Foundation Professor of Alzheimer’s Disease and Dementia Disorders in the Department of Psychiatry, and codirector, ADRC. In addition to making possible the early diagnosis of Alzheimer’s disease, PiB should help clinicians monitor the disease’s progression. PiB works by binding to telltale beta-amyloid plaque deposits found in the brains of patients with Alzheimer’s. These plaques are thought to kill brain cells, and their presence differentiates Alzheimer’s disease from other dementias. PiB can be injected into the bloodstream of patients, and specialists can then use PET imaging to locate the plaques associated with Alzheimer’s. Before Pittsburgh Compound B, it was possible to confirm Alzheimer’s disease only after a patient’s death at autopsy.

The Tippins Family Foundation supports numerous areas of research at Pitt, including cancer and urology, but ADRC has become an unofficial focus. And, like George Tippins, John and his family support the research being done in Western Pennsylvania.

“We really want to try to help solve the real problem for humanity, if we can,” says John Tippins. “It’s wonderful that we have an organization like Pitt right here that is truly outstanding.”
Deborah S. Orens and Jeffrey D. Orens
Ellen M. Ormond, PhD
Susan M. Orringer and Mark B. Orringer, MD
Sandy and Gene O’Sullivan
Mary E. Othic and Christopher Othic
David L. Blinn, MD, and Donna M. Ottoviani
Jennifer Paisley
Vasso E. Palouras and Constantine S. Palouras
Alicia M. Palladino, PhD, and Michael J. Palladino, PhD
Edna F. Panbakker
Mary Panitch and Howard Barry Panitch, MD
Daniel Paquin
Kay B. Pareso and James D. Pareso, MD
Sun C. Park and Sang C. Park, MD
Vida Cecilia A. Passero, MD, and Christopher J. Passero, MD
Scott R. Patrick
Kate L. Patrick and Stuart K. Patrick
Mr. and Mrs. Kenneth L. Payne
Henry M. Pelusi
Kathleen J. Pelusi and John H. Pelusi Jr., Trustee
Revathi Pennathur and Arjun Pennathur, MD
Marshall D. Peris, MD, and Anna A. Peris, PharmD
Michael A. Perkovich
Diane Peterson Mathis
Suzanne K. Morrissey, MD, and Daniel P. Petro, MD
Mark Petros and Jill Petros
Christine J. and Robert A. Pietrandrea
Mark Petros and Jill Petros
Ned and Sally Randall
John G. Rangos Sr.
Rama K. Rao
Hariklia E. Raptis and Anastasios Raptis, MD, PhD, FACP
Carol Rasnak
Edie Rath and David Rath
Diana M. Rath, MD, and Frank E. Rath Jr.
Linda Ray
Diane H. Raymond and James I. Raymond, MD
P. Sudhakar Reddy, MD
Anu Reddy and Dr. Raj Reddy
Taruna Reddy
John C. Regan
Scott C. Reinhart, MD
Randall S. Remahl
Michaela Remtulla, MD, and Rahim A. Remtulla, MD
Susan L. Greenspan, MD, and Neil M. Resnick, MD
Amy S. Rex and James Caldwell
Rex Jr., MD
Dr. Kathleen W. Reyes and Vincent E. Reyes, MD
Cary O. Poropatich, MD, and Ronald K. Poropatich, MD
Elizabeth S. Porter, MD
Marsha A. Poster, PhD
Wesley W. Posvar Jr.
Lesley L. Pothas and Marc A. Pothas
James L. Poth Jr., MD
Carolyn Powell and E. Reid Powell
Mary L. Pranzo, PhD
Richard A. Prather and Margaret L. Prather, DO
Robert E. Price Jr. and Denise R. Price
Thomas W. Trimm and Patricia A. Prozzi
Edward V. Puccio, MD
Dr. Raman S. Purighalla and Uma Purighalla, MD
Janet K. Quint
Jay S. Rabinowitz, MD, and Mindy G. Rabinowitz
Sally Rabinowitz and Ronald Rabinowitz, MD
Nancy L. Rackoff, Esquire, and William H. Rackoff
Kathryne G. Raclin and Jonathan S. Raclin
Margaret V. Ragni, MD, MPH
Dorothy L. Raizman, Esquire
Roosemarie and Kiran Rajesnan, MD
Mary L. Ranck and Sidney Graydon Ranck Jr., MD
Ned and Sally Randall
John G. Rangos Sr.
Rama K. Rao
Hariklia E. Raptis and Anastasios Raptis, MD, PhD, FACP
Carol Rasnak
Edie Rath and David Rath
Diana M. Rath, MD, and Frank E. Rath Jr.
Linda Ray
Diane H. Raymond and James I. Raymond, MD
P. Sudhakar Reddy, MD
Anu Reddy and Dr. Raj Reddy
Taruna Reddy
John C. Regan
Scott C. Reinhart, MD
Randall S. Remahl
Michaela Remtulla, MD, and Rahim A. Remtulla, MD
Susan L. Greenspan, MD, and Neil M. Resnick, MD
Amy S. Rex and James Caldwell
Rex Jr., MD
Dr. Kathleen W. Reyes and Vincent E. Reyes, MD
James S. Reynolds
Kristin Burns Reynolds and John D. Reynolds IV
Dawn Amy Rhee and John C. Rhee, MD
Lawrence S. Rich and Betty Sue Rich
Dr. John E. Richardson
William E. McKahan and Ruth A. Riesenman, EdD
C. Daniel Riggs
*Paul M. Rike, MD
Anne K. Ringham
Mona Riordan and Robert W. Riordan
Dr. Linda S. Kardos and Howard M. Robbins, MD
Christopher F. Robertshaw
Marc B. Robertshaw
Donald F. Fink and Benjamin C. Robertson, PhD
Jeffrey B. Markel and Carol L. Robinson
William Henry Robinson III, Esquire, and Toni Lynn Robinson
Roger Roble
Katherine D. Rockey and Charles E. Rockey
Ann A. Rogers
Sandra B. Rogers
Jane M. Rollman and Bruce L. Rollman, MD, MPH
Joanne K. Romboski
Jeffrey A. Romoff
Greta Rooney and Arthur J. Rooney II, Trustee
Glena Root
Joan Rosenfeld and David L. Rosenfeld, MD
Margaret Quinn Rosenzweig, PhD, and Michael H. Rosenzweig, Esquire
Karen and Anthony Ross
Michael J. Rossi
Gayla Margolin, PhD, and Steven Rottman, MD
Diane D. Rowe and Clifford R. Rowe Jr.
Gordon Lisker and Nancy A. Rozenadal
Joshua T. Rubin, MD, and Pamela J. Rubin
Thomas C. Rumsey
Sandra I. Ruscetti, PhD, and Francis W. Ruscetti, PhD
Layla B. Saba and Samir F. Saba, MD
Michael H. Sable in honor and memory of his beloved late wife Catherine Marie Heaney
Michael B. Saggiuse
Annie Sahel and José-Alain Sahel, MD
*Anne Salmon and *The Honorable J. Quint Salmon
Pablo J. Sanchez, MD
Marjorie K. Sandoval
Susan C. Santa-Cruz
Jeffrey P. Sarcomis
Athena Sarris
Ronnie C. Parker, MD, and Melissa I. Saul
Charolette J. Saunders
Samantha J. Scalise and Mark R. Scalise
Diane C. Schachner, MSN, RN, and Thomas J. Schachner
Irwin A. Schafer, MD
*Marion Weinman Schafer
Martha S. Scheeren
Patricia A. Scheller
Mikell Schenck and A. William Schenck III
Holly Schlossmann and Bradley S. Schlossmann
Christopher C. Schmidt, MD
Robert E. Steele and Marisa S. Schmitt, MD
*Fritz N. Schneider
Katherine M. Scholl
Kathleen Schulien and Anthony J. Schullien
Cynthia Schumann and Glen E. Schumann
Dorie S. Schwab and Thomas A. Schwab
Jeffrey J. Schwalm
Margaret A. Schwarz, MD, and Dr. Roderich E. Schwarz
Lana J. Scolieri and Michael J. Scolieri, MD
Sun K. Scolieri, MD, and Paul Scolieri, MD
Lari M. Scorzia, MD
Joyce S. Scott and Charles N. Scott
Craig H. Scott, MD, and Evelyn S. Scott, MD
Marilyn A. Scott
Katherine R. Screen
Bonnie J. Seaton
Steven A. Burton, MD, and Tracy Robin Seewald, MD
Anita A. Seifert and Edward W. Seifert
Charles J. Seigel, MD
Stewart Sell, MD
*Joan D. Shanahan
Barbara B. Shapira
William G. Sharra III, MD
Sharon Sharratt and Thomas Sharratt
An Inspiring, Grateful Reunion

When John Garcia was a student at West Virginia University, he decided to look for a summer job. John Hardesty hired him to work over the summers, and it was the beginning of a decades-long friendship. Over the years, Mr. Garcia would eat meals, go on vacations, and spend holidays with the Hardestys, who welcomed him as a member of the family. Mr. Garcia got to know Mr. Hardesty's son, Johnny, very well.

In 1998, Johnny was a student at the University of Georgia when Mr. Hardesty received a call from the university's clinic with a message to pick up Johnny right away. What Johnny suspected was only a sore leg from playing touch football was actually something more serious. A quick visit to a physician in Morgantown confirmed a grim diagnosis.

"Johnny was diagnosed with osteogenic sarcoma, a cancer that begins in the bones," said Mr. Hardesty. "The doctor told me my son was probably not going to live. That's when I said, 'Well, that's bullshit.'"

Mr. Hardesty sought recommendations to get the best care for Johnny and ended up taking him to Shadyside Hospital (now UPMC Shadyside). During Johnny's time in the hospital, the Hardestys were befriended by the Weisses, another family whose son, Kurt, also had osteogenic sarcoma as a teenager. Kurt and Johnny endured similar chemotherapy, operations, and leg amputations, and their parents bonded over their sons' diagnoses and treatments.

"Mary Anne, my wife, and Mrs. Weiss went through many of the same sufferings together," says Mr. Hardesty.

Kurt Weiss, MD, cancer survivor and researcher, friend of the Hardesty and Garcia families, and grateful recipient of their support for his sarcoma research

Mr. Hardesty credits Mr. Garcia with coming up with the idea for them to create the Osteosarcoma Research Fund in Johnny's memory to support Dr. Weiss' research. The fund has been essential for Dr. Weiss' lab, which he codirects with Rebecca Watters, PhD, assistant professor of orthopaedic surgery.

"Dr. Watters and I had originally planned to save this donation for a rainy day," says Dr. Weiss. "Well, that was before COVID-19, and now it’s raining! The pandemic has been difficult for everyone, and scientists are no exception. Thanks to the Hardesty and Garcia families, we have been able to keep the lights on in the lab. We are grateful beyond words for their friendship, kindness, and generosity."

"My wife, Cathy, and I are truly grateful for the physicians and care we have received at the University of Pittsburgh and UPMC over the years," says Mr. Garcia. "We have a great deal of appreciation for their work. It was great for me to see Dr. Weiss' research facility. When you walk through that lab and see what they’re doing, you want them to have the best and be the best. That’s what motivates us to help with these programs. Dr. Weiss is a special guy, and his staff truly reflect his passion. In my mind, it is not a coincidence that a conversation on a fishing trip with my friend Ken Marino regarding Dr. Weiss and Johnny reunited the families after all these years."

"We’re praying that Dr. Weiss can find a cure for osteogenic sarcoma," says Mr. Hardesty. "Kurt has dedicated a significant amount of his life and time to doing research on a cancer that he and my son both went through. We’re glad to be a part of supporting research."

So, years later, when Mr. Garcia was on a fishing trip and heard of an orthopaedic cancer physician at the University of Pittsburgh with a story just like Johnny’s, he told Mr. Hardesty, who realized the physician was Kurt Weiss, and a reunion was set in motion through mutual acquaintances. Kurt Weiss, MD, associate professor of orthopaedic surgery, welcomed the Hardestys and the Garcias to his Pitt lab to reconnect with his parents and to show them his transformation from bone cancer survivor to surgeon and cancer researcher, codirecting the Department of Orthopaedic Surgery’s Musculoskeletal Oncology Laboratory, dedicated to the study of bone and soft tissue tumors.

“Kurt brought us up to speed on his research,” says Mr. Garcia. “The question still looms: How does that cancer metastasize from bone to the lung or other parts of the body? He seems to be making headway on that.”

Kurt Weiss, MD, cancer survivor and researcher, friend of the Hardesty and Garcia families, and grateful recipient of their support for his sarcoma research
<table>
<thead>
<tr>
<th>ORGANIZATIONS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1994 Steel Factory Corporation</td>
<td>84 Lumber Company</td>
<td>AbbVie Inc.</td>
</tr>
<tr>
<td>A Breath of Hope Lung Foundation</td>
<td>A Glimmer of Hope Foundation</td>
<td>AstraZeneca Pharmaceuticals LP</td>
</tr>
<tr>
<td>AACN Foundation</td>
<td>AI Solutions Inc.</td>
<td>The Audrey Hillman Fisher Foundation</td>
</tr>
<tr>
<td>Abraxis Plastic Surgery of Pittsburgh</td>
<td>AIM at Melanoma Foundation</td>
<td>Aura R. Hulme Irrevocable Trust</td>
</tr>
<tr>
<td>AGA Research Foundation</td>
<td>Alliance for Cancer Gene Therapy</td>
<td>Autism Speaks Inc.</td>
</tr>
<tr>
<td>AI Solutions Inc.</td>
<td>Alphabet City Management Co.</td>
<td>AVI Foodsystems Inc.</td>
</tr>
<tr>
<td>ALS Association</td>
<td>American Association of Immunologists</td>
<td>Awesome Events</td>
</tr>
<tr>
<td>Alzheimer’s Association</td>
<td>American Cancer Society Inc.</td>
<td>The Ayco Charitable Foundation</td>
</tr>
<tr>
<td>American Academy of Child & Adolescent Psychiatry</td>
<td>American Academy of Otolaryngology-Head and Neck Surgery</td>
<td>Bakery Square Holdings LP</td>
</tr>
<tr>
<td>American Association for Cancer Research</td>
<td>American Association for the Study of Liver Diseases</td>
<td>Bakery Square & Walnut Capital</td>
</tr>
<tr>
<td>American Association of Immunologists</td>
<td>American Cancer Society Inc.</td>
<td>Bayer</td>
</tr>
<tr>
<td>American Cancer Society Inc.</td>
<td>American College of Medical Toxicology</td>
<td>The Breast Cancer Research Foundation</td>
</tr>
<tr>
<td>American Diabetes Association</td>
<td>American Foundation for Suicide Prevention</td>
<td>Bellator Sport Worldwide LLC</td>
</tr>
<tr>
<td>American Foundation for Suicide Prevention</td>
<td>American Heart Association Inc.</td>
<td>The Benevity Community Impact Fund</td>
</tr>
<tr>
<td>American Foundation for Surgery of the Hand</td>
<td>American Lung Association</td>
<td>Margaret J. Biddle Charitable Trust</td>
</tr>
<tr>
<td>American Heart Association Inc.</td>
<td>American Orthopaedic Foot & Ankle Society</td>
<td>Big Burrito Restaurant Group</td>
</tr>
<tr>
<td>American Lung Association</td>
<td>The American Orthopaedic Society for Sports Medicine</td>
<td>Bill & Melinda Gates Foundation</td>
</tr>
<tr>
<td>American Orthopaedic Society for Sports Medicine</td>
<td>American Parkinson Disease Association Inc.</td>
<td>Binational Science Foundation</td>
</tr>
<tr>
<td>American Sleep Medicine Foundation</td>
<td>American Society for Pharmacology and Experimental Therapeutics</td>
<td>The Birmingham Foundation</td>
</tr>
<tr>
<td>American Society for Hematology</td>
<td>American Society of Nephrology</td>
<td>Bishop McCord High School</td>
</tr>
<tr>
<td>American Society of Hematology</td>
<td>American Textile Company</td>
<td>BNY Mellon Foundation of Southwestern Pennsylvania</td>
</tr>
<tr>
<td>American Venous Forum Foundation</td>
<td>The Ann & Frank Cabouet Foundation</td>
<td>Boston Scientific Cardiac Rhythm Management</td>
</tr>
<tr>
<td>Amgen USA</td>
<td>AOTrauma North America</td>
<td>Bowser Automotive Inc.</td>
</tr>
<tr>
<td>The Ann & Frank Cabouet Foundation</td>
<td>ArtSci Health Solutions</td>
<td>Brain Cancer Awareness 5K, Limited</td>
</tr>
<tr>
<td>Artist & Decorating Co.</td>
<td>Assist America Inc.</td>
<td>Breast Cancer Alliance</td>
</tr>
<tr>
<td>Associazione Italiana per la Ricerca sul Cancro</td>
<td>AstraZeneca Pharmaceuticals LP</td>
<td>Bristol-Myers Squibb Company</td>
</tr>
<tr>
<td>Autism Speaks Inc.</td>
<td>The Ayco Charitable Foundation</td>
<td>Brooke High School</td>
</tr>
<tr>
<td>AVI Foodsystems Inc.</td>
<td>Bakery Square Holdings LP</td>
<td>BRP US Inc.</td>
</tr>
<tr>
<td>Awesome Events</td>
<td>Bakery Square & Walnut Capital</td>
<td>Bruce E. Dice & Associates PC</td>
</tr>
<tr>
<td>The Ayco Charitable Foundation</td>
<td>Bakerly Partners LP</td>
<td>Buchanan Ingersoll & Rooney PC</td>
</tr>
<tr>
<td>Bakery Square Holdings LP</td>
<td>The Buncher Company</td>
<td>Buckeye Partners LP</td>
</tr>
<tr>
<td>The Ayco Charitable Foundation</td>
<td>The Jack Buncher Foundation</td>
<td>The Burroughs Welcome Fund</td>
</tr>
<tr>
<td>Bakery Square & Walnut Capital</td>
<td>The Buncher Company</td>
<td>Bye Bye Birdies</td>
</tr>
<tr>
<td>Bakerly Partners LP</td>
<td>Byham Charitable Foundation</td>
<td>Byham Charitable Foundation</td>
</tr>
<tr>
<td>The Burroughs Welcome Fund</td>
<td>C.F. Roe Slade Foundation</td>
<td>Cystinosis Research Foundation</td>
</tr>
<tr>
<td>Bye Bye Birdies</td>
<td>Cabaniss, Johnston, Gardner, Dumas & O’Neal LLP</td>
<td>Damon Runyon Cancer Research Foundation</td>
</tr>
<tr>
<td>Byham Charitable Foundation</td>
<td>Camelot Communications Group Incorporated</td>
<td>Dana C. Wood Revocable Trust</td>
</tr>
<tr>
<td>C.F. Roe Slade Foundation</td>
<td>Cancer Data Initiative</td>
<td>Daniel and Glenda Root Family Foundation</td>
</tr>
<tr>
<td>Cabaniss, Johnston, Gardner, Dumas & O’Neal LLP</td>
<td>Carnegie Mellon University</td>
<td>Dargen Errante Yavitz & Blau LLP</td>
</tr>
<tr>
<td>Camelot Communications Group Incorporated</td>
<td>Catholic Diocese of Wichita</td>
<td>Dealers Auto Auction of the Rockies</td>
</tr>
<tr>
<td>Cancer Data Initiative</td>
<td>Celgene Corporation</td>
<td>Deborah A. Walsh Trust</td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td>centre for Neuro Skills Inc.– Bakersfield</td>
<td>DeHay & Elliston LLP</td>
</tr>
<tr>
<td>Catholic Diocese of Wichita</td>
<td>CERTIFY Global Inc.</td>
<td>Deloitte</td>
</tr>
<tr>
<td>Celgene Corporation</td>
<td>CET Training LLC</td>
<td>Dempsey Construction Inc.</td>
</tr>
<tr>
<td>Centre for Neuro Skills Inc.– Bakersfield</td>
<td>CERTIFY Global Inc.</td>
<td></td>
</tr>
<tr>
<td>Charles E. Kaufman Foundation</td>
<td>Charles F. Spang Foundation</td>
<td></td>
</tr>
<tr>
<td>Charles E. Kaufman Foundation</td>
<td>Chartwell Pennsylvania LP</td>
<td></td>
</tr>
<tr>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Citizens United for Research in Epilepsy</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Clark Patterson Lee</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Clear Thoughts Foundation</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Cleveland Brothers Equipment Co. Inc.</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Clyde & Co</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>CNX Resources Corporation</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Coherus Biosciences Inc.</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Committee to Elect Wayne Fontana</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Community Foundation of Western PA & Eastern OH</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Community Liver Alliance</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Comtec Inc.</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Conquer Cancer Foundation of the American Society of Clinical Oncology</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Consult USA</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Conti Family Foundation</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Cosmich, Simmons & Brown PLIC</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Cost Company</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>CPI, Architects & Engineers</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Crawford Consulting Services</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Crohn’s and Colitis Foundation</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>CNX Group LLC</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Cystinosis Research Foundation</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Damon Runyon Cancer Research Foundation</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Dana C. Wood Revocable Trust</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Daniel and Glenda Root Family Foundation</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Dargen Errante Yavitz & Blau LLP</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Dealers Auto Auction of the Rockies</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Deborah A. Walsh Trust</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>DeHay & Elliston LLP</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Deloitte</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Dempsey Construction Inc.</td>
<td>Chronic Obstructive Pulmonary Disease Foundation Inc.</td>
<td></td>
</tr>
</tbody>
</table>

BEFORE AN INDIVIDUAL’S NAME INDICATES THE PERSON IS DECEASED
Deno F. Barsotti Family Fund
Dermatology Foundation
Design Alliance
Dialysis Clinic Inc.
The Walt Disney Company Foundation
Dollar Bank Foundation
Donegal Insurance Group
Dorothy L. Lappin Foundation
Dorsey & Whitney LLP
Doyle for Congress Committee
Dr. Gordon J. Vanscoy CLAT TR
Drinker Biddle & Reath LLP
DSF Charitable Foundation
Easley & Rivers Inc.
The Raymond and Elizabeth Bloch Foundation
Elizabeth Equipment Services LLC
Elizabeth Louise Glasgow Foundation
Emelie Renziehausen Trust
Emma Clyde Hodge Memorial Fund
Endocrine Society
Equitrans Midstream Foundation
Ernst & Young
Ernst & Young Foundation
The Ethel Vincent Charitable Trust
Eugene J. Klein and Ruth A. Klein Charitable Remainder Trust
Extracorporeal Life Support Organization
ExxonMobil Foundation
Eye & Ear Foundation
Farrell Family Charitable Foundation
established by Michael J. Farrell
Federated Investors Inc.
Fidelity Charitable Gift Fund
The Fine Foundation
First National Bank of Pennsylvania
Flaherty & O’Hara PC
Flight Attendant Medical Research Institute
Foudnation Ledeuq
Foundation Fighting Blindness
Foundation for Physical Medicine and Rehabilitation
Michael J. Fox Foundation for Parkinson’s Research
Francis Family Foundation
Franco Associates LP
Frank Calandra Inc.
Friends of Susan Merison
Fritz N. Schneider Revocable Trust
Frontstream
The Fund for Charitable Giving
The Futrell Foundation
Gailliot Family Foundation
Gallagher Bassett Service Inc.
GE Foundation
Genentech USA
Genzyme Corporation
Gertrude Blumenschein CRUT
Gertrude E. Hellerman Charitable Trust Fund
GIST Cancer Research Fund
The Gloria and Thomas R. Kitchen Memorial Foundation
Goldman Sachs & Company
Gordon & Rees Scully Mansukhani
Greater Horizons
Greenfish Marketing LLC DBA Wild West Bass Trail
Grey NY
Griffols
Harold D Thomas Jr Living Trust
HDJ & Associates Inc.
Head For The Cure Foundation
Helen Mendel Survivors Trust
Hemophilia Center of Western Pennsylvania
Henderson Brothers Incorporated
Henry Clay Frick Rodgers Trust
Henry L. Hillman Foundation
Heritage Valley Medical Group–31 Highmark
The Hillman Company
The Hinchman Foundation
Hirshberg Foundation for Pancreatic Cancer Research
Hoff Enterprises Inc.
Holman Webb Lawyers Adelaide
Homestead District Lion Club
Howard Hanna Company
Hunter Legacy Family Foundation
The Huntington National Bank
Husch Blackwell LLP
IBM Employee Services Center
Image Associates Inc.
Immucor
Immunomedics
Incyte Corporation
Innovative Municipal Products (US) Inc.
International Anesthesia Research Society
International OCD Foundation
Interstitial Cystitis Association of America Inc.
Involta LLC
ITW Foundation
The Institute for Transfusion Medicine
Jacobs & Wallace PLLC
Jacqueline E. Bayley Foundation
James B. Tafel Trust
Jane and Tom Tang Foundation for Education
Janssen Biotech Inc.
Jennmar Corporation
Jewish Federation of Greater Pittsburgh
Jewish Healthcare Foundation
JG Direct Mail Marketing Inc.
John A. Nigro Inc DBA C S Kim Karate
John G. Rangos Sr. Family Charitable Foundation
John H. Jr. and Kathleen J. Pelusi Family Foundation
John Nesbit Rees and Sarah Henne Rees Charitable Foundation
Joseph M. Spier Charitable Lead Unitrust
JPT Architects PC
Just Pour It LLC
Juvenile Diabetes Research Foundation
K & I Sheet Metal Inc.
Katherina A. Miller Trust
The Mary Kay Foundation
KCIC LLC In Escrow for Dana Companies LLC
Kelly Family Foundation
Kenmaur Real Estate Investments LP
Kenneth Rainin Foundation
The Klingenstein Third Generation Foundation
Knights Templar Eye Foundation Inc.
Koncept Inc.
Koppers Inc.
Kosanovich Revocable Living Trust
Kurt J. Lesker Company
The Kurtz Family Foundation
Kyowa Kirin Inc.
The Laerdal Foundation for Acute Medicine
Latrobe Specialty Metals
Laurel Mountain Production LLC
Leech Carbide
Life Sciences Research Foundation
Lilly Oncology
Lodi Bass Team
Lostritto Family Foundation
Louis and Sandra Berkein Foundation
Love Family Foundation Inc.
Lumbar Spine Research Society
Lupus Research Alliance
MacLachlan, Cornelius & Filoni Inc.
Malady & Wooten Inc.
Marbury Group
Margaret Hardy Trust
Margaret L. Stevens Foundation
Mark Foundation for Cancer Research
Markovitz Family Trust
The Marstine Family Foundation
Mascari Warner Dinh Architects
Mascaro Construction Company LP
Massaro Corporation
McElhattan Foundation
McGivney Kluger & Cook PC
The McKamish Family
Medtronic Inc.
MehaffyWeber PC
Melanoma Research Foundation
Memory Finders
Mendel E. & Sylvia G. Solomon Charitable Trust
The Merck Foundation
Mesothelioma Applied Research Foundation
Michael Mosier Defeat DIPG Foundation
Microsoft Corporation
Microvascular Therapeutics LLC
Mid Atlantic Capital Corporation
The Millbank Foundation
Miscellaneous Anonymous Donor
Montour School District
Morby Family Charitable Foundation Inc.
Morgan Stanley Global Impact Funding Trust
Mount Lebanon Travel Hockey Association
National Psoriasis Foundation Inc.
Nhk Japan Broadcasting Corp.
NARSAD Research Institute Inc.
National Eczema Association
National Organization for Rare Disorders
National Philanthropic Trust
National PKU Alliance
National Prroriasis Foundation Inc.
NBBJ
NCFM Foundation
New Era Cap Foundation
The New York Community Trust
New York State Amateur Hockey Association Inc.
Nih Japan Broadcasting Corp.
Nokia
<table>
<thead>
<tr>
<th>Organization</th>
<th>Organization</th>
<th>Organization</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normandy Industries Inc.</td>
<td>NSABP Foundation Inc.</td>
<td>One Hope Foundation</td>
<td>One Mind for Research</td>
</tr>
<tr>
<td>Orthopaedic Research and Education Foundation</td>
<td>O’Toole Scriver Fernandez Weiner Van Lue LLC</td>
<td>Oxford Development Company</td>
<td>P. J. Dick Incorporated</td>
</tr>
<tr>
<td>PAA Foundation</td>
<td>PACS1 Syndrome Research Foundation</td>
<td>Parkinson’s Disease Foundation</td>
<td>Pennsylvania Breast Cancer Coalition</td>
</tr>
<tr>
<td>People-Centered Research Foundation</td>
<td>Pharmacyclics LLC</td>
<td>Philip V. & Anna S. Brown Foundation</td>
<td>PhRMA Foundation</td>
</tr>
<tr>
<td>Pirates Charities</td>
<td>Pittsburgh Emergency Medicine Foundation</td>
<td>Pittsburgh Magazine</td>
<td>Pittsburgh Penguins</td>
</tr>
<tr>
<td>Pittsburgh Pirates</td>
<td>Pittsburgh Post-Gazette</td>
<td>Pittsburgh Steelers LLC</td>
<td>Plastic Surgery Foundation</td>
</tr>
<tr>
<td>Plastic Surgery Foundation</td>
<td>PNC Centers USA & Consult USA</td>
<td>PNC Charitable Trust</td>
<td>PNC Financial Services Group Incorporated</td>
</tr>
<tr>
<td>Pond North LLP</td>
<td>PricewaterhouseCoopers LLP</td>
<td>Promobilia Foundation</td>
<td>Pulmonary Fibrosis Foundation</td>
</tr>
<tr>
<td>Pyrotechnic Management Inc.</td>
<td>R & D Watters Septic Service Inc.</td>
<td>R. P. Simmons Family Foundation</td>
<td>Raymond James Charitable</td>
</tr>
<tr>
<td>RCG Fight Management</td>
<td>Reinecke Family Charitable Foundation</td>
<td>Renaissance Charitable Foundation Inc.</td>
<td>RenovaCare Inc.</td>
</tr>
<tr>
<td>Renaissance Charitable Foundation Inc.</td>
<td>RenovaCare Inc.</td>
<td>Research to Prevent Blindness</td>
<td>Rheumatology Research Foundation</td>
</tr>
<tr>
<td>RL MED Foundation</td>
<td>Richard King Mellon Foundation</td>
<td>Richard King Mellon Foundation</td>
<td>Rizza Engineering Inc.</td>
</tr>
<tr>
<td>RM Creative</td>
<td>Robert I. Glmcher Family Foundation</td>
<td>Robert Wood Johnson Foundation</td>
<td>Roesch Family Charitable Trust</td>
</tr>
<tr>
<td>Roper Family Charitable Trust</td>
<td>S&K Bank</td>
<td>S. Reed Family Charitable Foundation</td>
<td>Sableseikai Takaoka Hospital</td>
</tr>
<tr>
<td>Salinas Police Officer Association</td>
<td>Samuel and Emma Winters Foundation</td>
<td>Sarcoma Foundation of America Inc.</td>
<td>Schub Charitable Fund</td>
</tr>
<tr>
<td>Scleroderma Foundation</td>
<td>Searle Scholars Program</td>
<td>Serving Other Souls</td>
<td>Shady Lady Studio LTD</td>
</tr>
<tr>
<td>Shell Oil Company Foundation</td>
<td>Shear Family Foundation</td>
<td>ShellyLyons Public Affairs & Communications</td>
<td>Shirley Hobbs Martin Memorial Fund</td>
</tr>
<tr>
<td>Slagle Family Foundation</td>
<td>Smail Auto Group</td>
<td>Smith & Nephew Inc.</td>
<td>Snyder Associated Companies Inc.</td>
</tr>
<tr>
<td>Snyder Family Foundation</td>
<td>Spector Perpetual Charitable Trust</td>
<td>Squire Patton Boggs (US) LLP</td>
<td>St. Clair Hospital</td>
</tr>
<tr>
<td>St. John’s Lutheran Church</td>
<td>Sunday School</td>
<td>Stanley M. Marks Blood Cancer Research Fund</td>
<td>The American Cancer Society</td>
</tr>
<tr>
<td>The Stanley Medical Research Institute</td>
<td>Steelers Charities</td>
<td>Stephen & Julia Harmelin Family Foundation</td>
<td>The Stephen A. Cullinan Trust</td>
</tr>
<tr>
<td>The Stephen A. Cullinan Trust</td>
<td>Sun Pharmaceutical Industries Inc.</td>
<td>Susan G. Komen for the Cure</td>
<td>System One Holdings LLC</td>
</tr>
<tr>
<td>UPMC</td>
<td>UPMC Enterprises</td>
<td>UPMC Pinnacle</td>
<td>UPMC Centers for Rehab Services</td>
</tr>
<tr>
<td>UPMC Enterprises</td>
<td>UPMC Pinnacle</td>
<td>UPMC Centers for Rehab Services</td>
<td>Urology Care Foundation</td>
</tr>
<tr>
<td>UPMC Pinnacle</td>
<td>UPMC Centers for Rehab Services</td>
<td>Usher 1F Collaborative Inc.</td>
<td>Vanguard Charitable</td>
</tr>
<tr>
<td>UPMC Centers for Rehab Services</td>
<td>Usher 1F Collaborative Inc.</td>
<td>Vascular Cures</td>
<td>Vasculitis Foundation</td>
</tr>
<tr>
<td>Urology Care Foundation</td>
<td>Vascular Cures</td>
<td>VitalTalk</td>
<td>Vavter & Associates Inc.</td>
</tr>
<tr>
<td>Usher 1F Collaborative Inc.</td>
<td>Vascular Cures</td>
<td>Volpatt Construction Corporation</td>
<td>Vavter & Associates Inc.</td>
</tr>
</tbody>
</table>

Every effort has been made to ensure the accuracy of these records. Any errors or omissions may be brought to the attention of the University of Pittsburgh Philanthropic and Alumni Engagement's Donor Relations and Stewardship: 412-624-8247 or rebecca.fink@pitt.edu
DEANS

SENIOR VICE CHANCELLOR FOR THE HEALTH SCIENCES AND JOHN AND GERTRUDE PETERSEN DEAN OF MEDICINE: Anantha Shekhar, MD, PhD
VICE DEAN: Ann E. Thompson, MD, MCCM

ASSOCIATE DEANS
Academic Affairs—Saleem Khan, PhD
Admissions and Financial Aid—Beth M. Piraino, MD
Continuing Medical Education—Barbara E. Barnes, MD, MS
Diversity, Equity, and Inclusion and Student Affairs—Chenits Pettigrew, EdD
Faculty Affairs—Joseph E. Losee, MD
Faculty Development—Ora A. Weisz, PhD
Global Health Education and Medical Student Research—Peter J. Veldkamp, MD, MS
Graduate Medical Education—Gregory M. Bump, MD
Graduate Studies—John P. Horn, PhD
Learning Environment—Evelyn C. Reis, MD
Medical Education—Jason Rosenstock, MD
Medical Scientist Training Program—Richard A. Steinman, MD, PhD
Medical Student Research—Donald B. DeFranco, PhD
Postdoctoral Affairs—Darlene F. Zellers, PhD
Student Affairs—Alda Maria Gonzaga, MD, MS
Women’s Health Research and Reproductive Sciences—Yoel Sadovsky, MD

ASSISTANT DEANS
Admissions—Kanchan H. Rao, MD
Clinical Education—Raquel A. Buranosky, MD, MPH
Human-Based Simulation Education—Reed Van Deuren, MD, MS
Learning Environment—Wendy Mars, PhD
Medical Education—Cynthia Lance-Jones, PhD
Medical Education Technology—James B. McGee, MD
Medical Scientist Training Program—JoAnne L. Flynn, PhD
Sadtarshan S. (Paul) Monga, MD
Medical Student Research—Judy C. Chang, MD, MPH; Brad Dicianno, MD, MS; John R. Fowler Jr., MD; Janel Hamner, MD, PhD; Rebecca P. Hughey, PhD; Cynthia Lance-Jones, PhD
Veterans Affairs—Ali F. Sonel, MD

INSTITUTES AND CENTERS

AGING INSTITUTE
DIRECTOR: Toren Finkel, MD, PhD

BRAIN INSTITUTE
SCIENTIFIC DIRECTOR: Peter L. Strick, PhD
EXECUTIVE DIRECTOR: Arthur S. Levine, MD

CENTER FOR MILITARY MEDICINE RESEARCH
DIRECTOR: Ronald K. Poropatich, MD

CENTER FOR VACCINE RESEARCH
DIRECTOR: W. Paul Duprex, PhD

CLINICAL AND TRANSLATIONAL SCIENCE INSTITUTE
DIRECTOR: Steven E. Reis, MD

DRUG DISCOVERY INSTITUTE
DIRECTOR: D. Lansing Taylor, PhD

INSTITUTE FOR CLINICAL RESEARCH EDUCATION
DIRECTOR: Doris Rubio, PhD

INSTITUTE FOR PRECISION MEDICINE
DIRECTOR: Adrian Lee, PhD

MAGEE-WOMENS RESEARCH INSTITUTE
DIRECTOR: Yoel Sadovsky, MD

MCgowan Institute for Regenerative Medicine
DIRECTOR: William R. Wagner, PhD

Pittsburgh Institute for Neurodegenerative Diseases
DIRECTOR: J. Timothy Greenamyre, MD, PhD

Thomas E. Starzl Transplantation Institute
SCIENTIFIC DIRECTOR: Fadi G. Lakiss, MD

UPMC Hillman Cancer Center
DIRECTOR: Robert L. Ferris, MD, PhD

Vascular Medicine Institute
DIRECTOR: Stephen Chan, MD, PhD

DEPARTMENTS

DEPARTMENT OF ANESTHESIOLOGY AND PERIOPERATIVE MEDICINE
CHAIR: Aman Mahajan, MD, PhD, MBA
EXECUTIVE VICE CHAIR: Mark E. Hudson, MD, MBA
VICE CHAIRS:
Basic Science—Yan Xu, PhD
Clinical Operations—Mark E. Hudson, MD, MBA
Clinical Research—Jonathan H. Waters, MD
Faculty Affairs and Education—David Metro, MD
Pain Medicine—Ajay D. Wasan, MD, MSc
Professional Development—Tetsuro Sakai, MD, PhD, MHA

DEPARTMENT OF BIOMEDICAL INFORMATICS
CHAIR: Michael J. Becich, MD, PhD
VICE CHAIR: Gregory F. Cooper, MD, PhD

DEPARTMENT OF CARDIOTHORACIC SURGERY
CHAIR: James D. Luketich, MD
VICE CHAIRS:
Benign Lung Diseases — Pablo Sanchez, MD, PhD
Cardiovascular Services—Victor O. Morell, MD
Clinical Affairs—Inderpal Sarkaria, MD

DEPARTMENT OF CELL BIOLOGY
CHAIR: Alexander D. Sorkin, PhD
VICE CHAIR: Simon C. Watkins, PhD

DEPARTMENT OF COMPUTATIONAL AND SYSTEMS BIOLOGY
CHAIR: Ivett Bahar, PhD
VICE CHAIRS:
Educational Programs—James R. Faeder, PhD
Faculty Affairs—Panayiotis V. (Takis) Benos, PhD

DEPARTMENT OF CRITICAL CARE MEDICINE
CHAIR: Derek C. Angus, MD, MPH
EXECUTIVE VICE CHAIR: Rachel Sackrowitz, MBA, MD
VICE CHAIRS:
Academic Affairs—Jeremy M. Kahn, MD, MS
Clinical Affairs and Quality Improvement—Scott Gunn, MD
Education—Lori Shutter, MD
Faculty Development—Douglas White, MD, MAS
Pediatric Critical Care — Robert Clark, MD
Research—John Kellum, MD
Resuscitation Research—Patrick Kochanek, MD
VICE CHAIR—Sachin Yende, MD, MS
VICE CHAIR EMERITUS—Michael Pinsky, MD
DEPARTMENT OF DERMATOLOGY
CHAIR: Louis D. Faló Jr., MD, PhD

DEPARTMENT OF DEVELOPMENTAL BIOLOGY
CHAIR: Cecilia Lo, PhD
VICE CHAIR: Neil Hukriede, PhD

DEPARTMENT OF EMERGENCY MEDICINE
CHAIR: Donald M. Yealy, MD
EXECUTIVE VICE CHAIRS:
Clifton W. Callaway, MD, PhD
Community Emergency Medicine—Richard J. Wadas, MD

VICE CHAIRS:
Clinical Operations—Charissa B. Pacella, MD
Community Clinical Operations—Marek A. Radomski, DO
Compliance and Medical Documentation—F. Richard Heath, MD
Education—Allan B. Wolffson, MD
Patient Safety and Quality—Paul E. Phrampus, MD

DEPARTMENT OF FAMILY MEDICINE
INTERIM CHAIR: Marshall W. Webster, MD
EXECUTIVE VICE CHAIR: Tracey Conti, MD

DEPARTMENT OF IMMUNOLOGY
CHAIR: Mark J. Shliomchik, MD, PhD
VICE CHAIR: Dario A. A. Vignali, PhD

DEPARTMENT OF MEDICINE
CHAIR: Mark T. Gladwin, MD
EXECUTIVE VICE CHAIRS:
Academic Affairs—Christopher O’Donnell, PhD
Clinical Affairs—Michael Donahoe, MD

VICE CHAIRS:
Clinical Research—Oliver Eickelberg, MD
Diversity and Inclusion—Naudia Jonassaint, MD, MPH
Education—Melissa A. McNeil, MD, MPH
Faculty Development—Ora A. Weisz, PhD
Veterans Affairs—Patrick J. Strollo Jr., MD

DEPARTMENT OF MICROBIOLOGY AND MOLECULAR GENETICS
CHAIR: Thomas E. Smithgall, PhD

DEPARTMENT OF NEUROBIOLOGY
CHAIR: Peter L. Strick, PhD

DEPARTMENT OF NEUROLOGICAL SURGERY
CHAIR: Robert M. Friedlander, MD, MA
EXECUTIVE VICE CHAIR: Surgical Services—Paul Gardner, MD

VICE CHAIRS:
Academic Affairs—Ian F. Pollack, MD
Quality Improvement—Peter C. Gerszten, MD, MPH
Research—C. Edward Dixon, PhD
UPMC Central PA—Raymond Sekula, MBA
UPMC Community Medicine—Joseph C. Maroon, MD

DEPARTMENT OF NEUROLOGY
INTERIM CHAIR: David A. Lewis, MD
INTERIM EXECUTIVE VICE CHAIR: Kenneth C. Nash, MD

VICE CHAIRS:
Academic Affairs—J. Timothy Greenamyre, MD, PhD
Education—Laurie Knepper, MD
Research—Steven H. Graham, MD, PhD
Safety and Quality—Partha Thirumala, MD
Veterans Affairs—Paula R. Clemens, MD

DEPARTMENT OF OBSTETRICS, GYNECOLOGY, AND REPRODUCTIVE SCIENCES
CHAIR: Robert P. Edwards, MD
EXECUTIVE VICE CHAIR:
Obstetrical Services—Hyagriv Simhan, MD

VICE CHAIRS:
Clinical Operations—John Fisch, MD
Community Practices—David Badway, MD
Diversity—Alexander Olawaiye, MD
Education—Gabriella Gosman, MD
Faculty Affairs—Sharon Hillier, PhD
Faculty Affairs—Isabelle Wilkins, MD
Gynecological Services—Harold Wiesenfeld, MD
Gynecologic Specialty Services and Referral Physician Relations—John Comerci, MD
Research—Yoel Sadovsky, MD

DEPARTMENT OF OPHTHALMOLOGY
CHAIR: José-Alain Sahel, MD
EXECUTIVE VICE CHAIR:
Global, Clinical, and International—Ken Nischal, MD

VICE CHAIRS:
Clinical Operations (including Quality and Clinical Research)—Vishal Jhanji, MD
Digital Ophthalmology—Kunal Dansingani, MD
Education—Evan L. Waxman, MD, PhD
Inpatient Care—S. Tonya Stefko, MD
Patient Experience and Access—Joseph Martel, MD, PhD
Research—Jeffrey Gross, PhD

DEPARTMENT OF ORTHOPAEDIC SURGERY
CHAIR: Freddie H. Fu, MD, DSci (Hon), DPs (Hon)
EXECUTIVE VICE CHAIRS:
Clinical Services—William Donaldson III, MD

VICE CHAIRS:
Clinical Outcomes Research—James Irrgang, PhD
Community Outreach—Mark E. Baratz, MD
Education—MaCalus Hogan, MD
Pediatric Orthopaedic Surgery—W. Timothy Ward, MD
Quality Management—Adolph Yates, MD
Translational Research—Kurt R. Weiss, MD

DEPUTY VICE CHAIR:
Orthopaedic Research—Nam Vo, PhD

DEPARTMENT OF OTOLARYNGOLOGY
CHAIR: Jonas T. Johnson, MD
VICE CHAIRS:
Clinical Operations—Eric Wang, MD
Education—Melanie Nance, MD
Quality and Patient Safety—Carl H. Snyderman, MD, MBA
Research—Thanos Tzounopoulos, PhD

DEPARTMENT OF PATHOLOGY
CHAIR: George K. Michalopoulos, MD, PhD
EXECUTIVE VICE CHAIRS:
Anatomic Pathology—Samuel A. Yousem, MD
Clinical Pathology—Melonie Nance, MD
Community Medicine—Alan Wells, MD, DMSc

VICE CHAIRS:
Entrepreneurial and International Affairs—Rajiv Dhir, MD
Experimental Pathology—Satdarshan S. (Paul) Monga, MD
Medical Education—Marie De Frances, MD, PhD
Molecular and Genomic Pathology—Yuri Nikiforov, MD, PhD

Departments continued
DEPARTMENT OF PEDIATRICS
CHAIR: Terence Dermody, MD
VICE CHAIRS:
Basic Research—Carl Bates, MD
Clinical Affairs—Jeffrey Rudolph, MD
Clinical Research—Alejandro Hoberman, MD
Diversity, Equity, and Inclusion—Loreta Matheo, MD
Education—Noel Zuckerbraun, MD
Faculty Development—Dena Hofkosh, MD, MEd
International Affairs—A. Kim Ritchey, MD

ASSOCIATE VICE CHAIRS:
Clinical Affairs—Gaurav Arora, MD
Diversity, Equity, and Inclusion—Sylvia Owusu-Ansah, MD, MPH
Education—Sunder Sims-Lucas, PhD
Education—Arvind Srinath, MD, MS
Faculty Development—Erika Friehling, MD
Faculty Development—Rick Saladino, MD
Faculty Development—Melissa Tavarez, MD

DEPARTMENT OF PHARMACOLOGY AND CHEMICAL BIOLOGY
CHAIR: Bruce A. Freeman, PhD
VICE CHAIRS:
Academics—Sruti Shiva, PhD
Biotechnology Development—Francisco J. Schopfer, PhD
Faculty Affairs—Michael J. Palladino, PhD
Graduate Education—Tija C. Jacob, PhD
Medical Education—Donald B. DeFranco, PhD
Precision and Translational Pharmacology—Stefi Oesterreich, PhD
Research—Ferruccio Galbiati, PhD
Research Operations—Edwin S. Levitan, PhD

DEPARTMENT OF PHYSICAL MEDICINE AND REHABILITATION
CHAIR: Gwendolyn A. Sowa, MD, PhD
VICE CHAIRS:
Clinical Outcomes and Quality Care—Amy Houtrow, MD, PhD, MPH
Faculty Development—Amy K. Wagner, MD
Medical Education—Wendy Helkowski, MD
Outpatient Services—Christopher Standaert, MD
Pediatric Rehabilitation Medicine—Amy Houtrow, MD, PhD, MPH
Research—Brad Dicianno, MD
Strategic Planning and Development—Michael Munin, MD

DEPARTMENT OF PLASTIC SURGERY
CHAIR: J. Peter Rubin, MD
EXECUTIVE VICE CHAIR: Joseph E. Losee, MD
VICE CHAIR: Research—Kacey G. Marra, PhD

DEPARTMENT OF PSYCHIATRY
CHAIR: David A. Lewis, MD
VICE CHAIR: Clinical Affairs—Kenneth C. Nash, MD

DEPARTMENT OF RADIATION ONCOLOGY
CHAIR: Joel S. Greenberger, MD

DEPARTMENT OF RADIOLOGY
CHAIR: Jules Sumkin, DO
EXECUTIVE VICE CHAIR: Mitchell Tublin, MD
VICE CHAIRS:
Clinical and Academic Affairs—Mitchell Tublin, MD
Clinical and Translational Imaging Research—Ashok Panigrahy, MD
Community Radiology—Kevin Auerbach, MD
Education—Vikas Agarwal, MD
Faculty Affairs—Frank Lexa, MD, MBA
Quality Assurance and Strategic Development—Margarita Zuley, MD

DEPARTMENT OF STRUCTURAL BIOLOGY
CHAIR: Angela Gronenborn, PhD

DEPARTMENT OF SURGERY
CHAIR: Timothy R. Billiar, MD
EXECUTIVE VICE CHAIR: Andrew B. Peitzman, MD
ASSOCIATE EXECUTIVE VICE CHAIR: Brian S. Zuckerbraun, MD
VICE CHAIRS:
Academic Training—Matthew R. Rosengart, MD, MPH
Clinical Services—Andrew B. Peitzman, MD
Diversity and Inclusion—Emilia J. Diego, MD
Graduate Medical Education—Kenneth K. W. Lee, MD
Quality Integration—Jennifer Holder-Murray, MD
Research (Faculty)—Michael T. Lotze, MD
Surgical Oncology Services—Amer H. Zureikat, MD

DEPARTMENT OF UROLOGY
CHAIR: Joel B. Nelson, MD
VICE CHAIR: Clinical Operations—Ronald M. Benoit, MD
Pediatric Urology—Glenn Cannon, MD
Vice Chair—Stephen V. Jackman, MD

CREDITS
This report was produced by the Office of Academic and Global Affairs, Health Sciences.
Margaret C. McDonald, PhD, MFA
Associate Vice Chancellor for Academic and Global Affairs
Lisa Lorence
Director of Academic Programs

STAFF
Michele Baum
Brandon Copp-Millward
Keith Gillogly, MA
Megan Hall, MPPM
Robert Mendelson
Maureen Passmore, MA, MFA
Teekie Smith, MSW
Cathy Steinitz
William Tanner

Special production assistance was provided by Jaime Doswell and Karen Steffey, Office of Faculty Affairs, School of Medicine, and Rebecca Fink, Philanthropic and Alumni Engagement, University of Pittsburgh.

University of Pittsburgh
School of Medicine
401 Alan Magee Scaife Hall
3550 Terrace Street
Pittsburgh, PA 15261
412-648-8975
www.medschool.pitt.edu

The University of Pittsburgh is an affirmative action, equal opportunity institution.
PHOTOGRAPHERS AND ILLUSTRATORS
John Altdorfer, page 46
Francesco Ciccolella, pages IFC, 25, 37
Ariella Coler-Reilly, page 10
Ada daSilva, page 9
Joshua Franzos, pages 8 (top), 24
Alessandro Gottardo, page 15
Klaus Kremmerz, cover
Erica Lansner, pages 1 (right), 38
Elan Mizrahi, page 3
Aimee Obidzinski/University of Pittsburgh, pages 4–5, 21
Rob Rogers, page 28
Gabrielle Rovegno/The Washington Post, page 18
Harriet Russell, pages 23, 33 (bottom right)
Maria Zaikina, pages 27, 32, 35

OTHER IMAGES COURTESY OF:
Pages 1 (left), 13, 34: Getty Images
Page 6, 8 (bottom): University of Pittsburgh
Page 7: Boris Birmaher (left) and Timothy Girard (right)
Page 10: Ariella Coler-Reilly, c.design
Page 11: UPMC
Page 16: Stephanie Varelas
Page 17: Joe Murphy
Page 22 (lower left): Julia Knight
Page 22: Camille Davis (top left), Victoria Humphrey (top right)
Page 26: NASA
Page 31: Ivet Bahar
Page 33 (top left and middle): Kacey Marra
Page 36: Fadi Lakkis and Martin Oberbarnscheidt
Page 43: John Tippins

Primary photography was taken prior to the pandemic. New photography was taken following mandatory physical-distancing and face-covering protocols.

Designed by Landesberg Design, Pittsburgh, Pa.
The report is printed on environmentally responsible, FSC Domtar Cougar paper.
Printing by RR Donnelley, Pittsburgh, Pa.
With the cancellation of most in-person events during the COVID-19 pandemic, the School of Medicine has reinvented how it celebrates its traditional milestone events.